22
Table 2. Peak identifications, calibration results, and deconvoluted library match scores against NIST20 for the scan analysis.
Table 3. Calibration results, and method detection limits (MDL) using SIM acquisition.
They are the products of reaction between chlorine and naturally occurring humic and fulvic acids, often present in source water. All trihalomethanes were confirmed in both samples with precisely matching retention times, qualifier ion ratios, and, except for tribromomethane, with good LMS search results. As expected, LMS values decrease with decreasing concentration of the analyte. The cis-1,2-dichloroethylene and tetrachloroethylene are commonly found at trace levels in ground water from areas with a history of industrial activity. Methyl tert-butyl ether (MTBE) was an additive to gasoline several years ago, used in response to federal mandates requiring specified levels of organic oxygen in gasoline. Its use was later banned when it began showing up in ground water as the result of leaking underground storage tanks at gasoline stations
Figure 6 shows the benefits of using both the scan and SIM methods on tap water samples. Spectral matching provides added confidence in the identification of compounds in the water samples.
Figure 6 also shows the extracted SIM quantifier ions and deconvoluted spectra for four of the seven VOCs found in the Eastern PA water sample. Dibromochloromethane [A] is confidently identified with an RT that precisely matches that in the calibration table, an acceptable ratio of the qualifier to quantifier responses (not shown), and a very high library match score. As the concentration of an analyte decreases, the signal-to-noise ratio in the both the spectra and quantifier chromatograms also decrease. In Figure 6, the spectral information is useful down to about 0.1 μg/L. The SIM data, which identifies using precise RT matching and the ratio of the qualifier to quantifier response can be used to lower levels.
Conclusion
While helium remains the preferred carrier gas for GC/ MS, hydrogen has been shown here as a viable alternative if problems with the price and/or availability of helium arise. One of the key components contributing to system performance is the new HydroInert source, designed specifically for hydrogen use. In addition to the new source, chromatographic conditions were optimised to provide separation of 80 volatile compounds in 7 minutes. The results of the scan mode evaluation demonstrated excellent spectral matching against the NIST20 library, and excellent calibration linearity with an average range of 0.16 to 25 µg/L.
The results of the SIM mode evaluation demonstrated excellent calibration linearity with an average range of 0.07 to 25 µg/L, and an average MDL for the 80 compounds of 0.026 µg/L.
INTERNATIONAL LABMATE - NOVEMBER 2022
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72