search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Determining priority areas for an Endangered cold-adapted snake on warming mountaintops


EDV ÁR D MIZS E I,MÁRTO N S ZABOLCS,LORÁND SZABÓ,ZOLTÁN BOROS KUJTIM ME R SIN I ,STEPHANOS A. ROUSS OS,MAR I A DIMAKI YANNIS I O ANNIDIS,ZSO L T VÉGVÁRI and S ZABOLC S L ENGYEL


Abstract Spatial prioritization in systematic conservation planning has traditionally been developed for several to many species and/or habitats, and single-species applica- tions are rare. We developed a novel spatial prioritization model based on accurate estimates of remotely-sensed data and maps of threats potentially affecting long-term species persistence. Weused this approach to identify priority areas for the conservation of the Endangered Greek meadow viper Vipera graeca, a cold-adapted species inhabiting mountain- tops in the Pindos Mountains of Greece and Albania. We transformed the mapped threats into nine variables to esti- mate conservation value: habitat suitability (climate suitabil- ity, habitat size, occupancy, vegetation suitability), climate change (future persistence, potential for altitudinal range shift) and land-use impact (habitat alteration, degradation, disturbance). Weapplied the Zonation systematic conserva- tion planning tool with these conservation value variables as biodiversity features to rank the areas currently occupied by the species and to identify priority areas where the chances for population persistence are highest. We found that 90% of current habitats will become unsuitable by the 2080s and that conservation actions need to be implemented to avoid extinction as this is already a threatened species with a nar- row ecological niche. If threats are appropriately quantified and translated into variables of conservation value, spatial conservation planning tools can successfully identify priority


EDVÁRD MIZSEI (Corresponding author, MÁRTON SZABOLCS ( (


LORÁND SZABÓ ( Debrecen, Hungary


KUJTIMMERSINI Protection and Preservation of Natural Environment in Albania, Tirana, Albania


STEPHANOS A. ROUSSOS Department of Biological Sciences, University of North Texas, Denton, USA MARIA DIMAKI Goulandris Natural History Museum, Kifissia, Greece YANNIS IOANNIDIS Biosphere, Ymittos, Greece SZABOLCS LENGYEL (


Received 4 December 2018. Revision requested 24 January 2019. Accepted 4 April 2019. First published online 12 March 2020.


orcid.org/0000-0002-8162-5293) orcid.org/0000-0001-9375-9937) and ZSOLT VÉGVÁRI orcid.org/0000-0002-2804-9282) Department of Tisza Research, Danube


Research Institute, Centre for Ecological Research, Bem tér 18/C, 4026, Debrecen, Hungary. E-mail edvardmizsei@gmail.com


orcid.org/0000-0001-7105-715X) Department of Physical


Geography and Geoinformatics, University of Debrecen, Debrecen, Hungary ZOLTÁN BOROS (


orcid.org/0000-0003-4364-9056) Bio Aqua Pro Ltd.,


areas for the conservation of single species. Our study demonstrates that spatial prioritization for single umbrella, flagship or keystone species is a promising approach for the conservation of species for which few data are available.


Keywords Climate change, habitat suitability, land use, protected area, range shift, reptile, spatial conservation planning, Vipera graeca


Supplementary material for this article is available at doi.org/10.1017/S0030605319000322


Introduction


rectly affect species. Amphibians and reptiles are among the groups most affected (Böhm et al., 2013; Ceballos et al., 2015). Reptiles are specifically threatened by habitat loss, degradation and fragmentation, introduction of invasive species, pollution, pathogens and climate change, resulting in global population declines (Cox & Temple, 2009). Global climate change plays a key role in the biodiversity


B


crisis (Butchart et al., 2010), as it causes a redistribution of biodiversity patterns (Pecl et al., 2017). Many species are predicted to shift their range, mostly towards the poles or higher altitudes (Hickling et al., 2006;Chenetal., 2011). Spe- cies adapted to high altitude habitats are thus particularly threatened by climate change because they often have low dispersal ability, a high level of habitat specialization and fragmented distributions, all of which predict low probabil- ity of range shift (Davies et al., 2004). Ectothermic animals such as reptiles are further threatened by climate change because of their sensitivity to changes in the thermal landscape and low dispersal ability (Sinervo et al., 2010). Mountain-dwelling species usually escape the changing thermal landscape by shifting their distributions to higher altitudes (Haines et al., 2017) but this is possible only if the local topography allows this (Şekercioğlu et al., 2008). Meadow vipers (Vipera ursinii complex) are among the


orcid.org/0000-0002-7049-0100) GINOP Sustainable


Ecosystems Group, Department of Tisza Research, Danube Research Institute, Centre for Ecological Research, Debrecen, Hungary


most threatened reptiles of Europe. The Greek meadow viper Vipera graeca, a small venomous snake endemic to the Pindos mountain range of Greece and Albania that has recently been recognized as a separate species (Mizsei et al., 2017), is the least known meadow viper in Europe


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Oryx, 2021, 55(3), 334–343 © The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319000322


iological diversity has experienced significant losses as a result of a number of factors that directly or indi-


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164