This page contains a Flash digital edition of a book.
LEDs ♦ news digest


are fabricated utilising commercial scale deposition tools at RSL’s Nitride Research Centre in Phoenix, Arizona. Silicon substrates have a substantial cost advantage over the more traditional sapphire or SiC substrates typically utilised in LED fabrication.


Efficient long wavelength LEDs are essential milestones in the roadmap for Solid State Lighting (SSL), LED backlighting and next generation display technology. Green or longer wavelength nitride based LEDs are very challenging to fabricate compared to UV and blue LEDs due to decreasing quantum efficiencies and have remained a tough milestone for the LED industry.


RSL plans to eventually package the green and longer wavelength LEDs through its sister company, FlipChip International (FCI). Using its extensive experience in packaging semiconductor power devices, FCI plans to provide a proprietary packaging solution for these LED devices.


RSL scientists have also demonstrated initial tunability of this technology to multi-colour and white light spectrums. This RSL device illustrates great promise due to its potential for high intensity, low energy consumption and a roadmap to a very low commercial cost. RSL believes this technology can be commercialised in 2-3 years with migration to 200mm silicon substrates.


Bob Forcier, CEO, of RSL, stated, “These longer wavelength and green LED breakthrough devices fit perfectly into RSL’s roadmap for disruptive energy innovation at all levels on a global scale and leverages its GaN and InGaN-on-silicon investments.”


Wladek Walukiewicz, CTO, announced, “Green LED’s have been elusive due to material challenges of producing a high efficiency device in the green region and the longer wavelengths of the spectrum…we are quite excited about the potential of this device.”


Common UX4-LEDs Platform


The UX4-LEDs 150-mm wafer full-field projection lithography tool, released last November, has already been used for high-volume manufacturing of LED chips at leading LED manufacturers in Japan, Korea, Taiwan, and China, where it has proved its high performance and high reliability.


The UX4-LEDs FFPL 200 is mounted with a full- field projection lens of 200 mm in diameter on the common UX4-LEDs platform to enable full- field projection exposure of a 200-mm wafer. It can achieve a high throughput of 120 wafers per hour. Unlike the stepper systems that lower their


August/September 2011 www.compoundsemiconductor.net 79


Ushio’s two new “UX4-LEDs” tools prepare for lift off


The new models achieving better cost of ownership by further enhancing productivity and yield for high- volume manufacturing of III-nitride HB LED chips.


Japanese firm Ushio has started shipping what it says is the world’s first 200-mm wafer full-field projection lithography tool “UX4-LEDs FFPL 200” for manufacturing High-Brightness LED chips.


The firm has also completed development of the laser lift-off system “UX4-LEDs LLO 150” for volume manufacturing of vertical-structure LED chips.


The latest models of the UX4-LEDs are based on the same platform as Ushio’s field-proven UX series, which has an installed base of more than 1,100 systems.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180