industry red lasers
Displays will reignite the red laser market
The red laser is a great friend of the film buff. It has been the key ingredient for extracting the data from billions and billions of DVDs, and thanks to increases in output power, it promises to now enable the manufacture of brighter, more colourful displays, including three-dimensional ones employed in cinemas, says Modulight’s Marketing Manager Anca Guina.
or more than a decade the red laser diode’s only high-volume application has been optical storage – the playback and recording of DVDs, which can store films and other forms of digital data. According to the US market research firm Strategies Unlimited, shipments of 300 million laser chips serving this application, which emit milliWatt outputs at 650 nm in pulsed mode, accounted for 98 percent of the $1.41 billion visible red laser market in 2008.
F
However, while this market will continue to be a very valuable one for red laser manufacturers for many years to come, any chipmaker looking to grow their revenues will need to start serving new applications too, because sales of 650 nm diodes for optical storage have saturated. What’s more, these laser makers will also have to look beyond the other well-established, but far smaller markets for low-power red lasers, including those for bar code scanners and industrial applications that employ these diodes for pointing and measurement.
At Modulight – a well-established Finnish in-house manufacturer of red diode lasers that has a technology that originates from Tampere University of Technology – we have been identifying alternative markets for red lasers. They require sources with higher output powers, typically 1W or more.
28
www.compoundsemiconductor.net August / September 2011
Our company, along with other makers of red lasers, expects these sources to play a growing role in the medical laser market, which had a value last year of $432 million, equating to just less than 7 percent of the entire laser market, according to Strategies Unlimited. In this sector, high power lasers can be used for therapy and illumination applications. However, producing lasers with higher output powers that can operate reliably for the length of time demanded by this application is challenging, and the lack of ‘killer applications’ in this sector discourages chipmakers from running expensive development programmes.
A more promising application for red lasers is the entertainment and display market. Although it was only valued at $32 million in 2010, it is forecasted to grow at an annual rate of 20 percent over coming years. The main attraction of turning to visible lasers, or LEDs for that matter, is that they promise to deliver a far wider colour space than that which is attainable with conventional lamp-based technology. By mixing the output of red, green and blue lasers, it is possible to produce significantly deeper colours while setting a new benchmark for brightness.
Products that could soon sport small versions of these projectors – known as a picoprojectors – are top-of-the-
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180