This page contains a Flash digital edition of a book.
LEDs ♦ news digest


Samsung develops nitride LEDs on 200 mm silicon


Following the lead of Bridgelux, the Korean LED maker Samsung is developing a process to produce LEDs on 200 mm silicon.


Samsung Advanced Institute of Science and Technology (SAIT) has developed a process to produce LEDs on 200 mm silicon. Using this platform instead of sapphire, the widely used substrate for making LEDs today, promises to cut the cost of LED deposition and processing.


A paper presented by SAIT at the ninth International Conference on Nitride Semiconductors (ICNS) described the method used to produce LED epi- structures with an internal quantum efficiency of 65 percent.


Growth of high-quality GaN layers on silicon is not easy, due to differences in both the lattice constant and the thermal coefficient of expansion of the two materials.


SAIT has addressed both these issues by creating a crack-free template featuring AlN/AlGaN buffer layers, intermediate layers and an n-type GaN layer.


On this template engineers have created an LED structure featuring five quantum wells and a p-type AlGaN electron blocking layer. Photoluminescence (PL) mapping of this epiwafer produced an average emission wavelength of 429.5 nm, with a standard deviation of 10.3 nm.


Temperature-dependent PL measurements suggest that the internal quantum efficiency of the LEDs is 65 percent.


The research team have also employed a substrate transfer technique to fabricate vertical-LED chips from 8-inch epiwafers.


Toshiba addresses the green gap in LEDs


Inserting a thin AlGaN layer between the InGaN quantum well and the gallium nitride barrier delivers a tremendous hike in the output power of green LEDs.


One of the biggest problems facing the nitride community is the ‘green gap’ – the rapidly declining efficiency of green light emitters at longer and longer wavelengths.


But this issue can be combated, according to Toshiba’s Tamonari Shioda, by inserting thin AlGaN layers in the active region of a conventional device.


Shioda revealed to delegates at the ninth International Conference on Nitride Semiconductors (ICNS) that this approach could increase the output power of green LEDs by a factor of almost ten.


The engineer from Toshiba began by highlighting the big issues associated with propelling LEDs to longer wavelengths: deterioration of the crystal structure and greater phase separation, which can be addressed by improving the growth process; and an increase in electron-hole separation via the Quantum-confined Stark effect, which can be mitigated by switching the growth platform to a semi-polar or non-polar orientation.


Shioda explained that the company wants to improve its green devices on c-plane sapphire, and to do this its engineers have worked to improve the band structure of the device. The primary goal of this effort has been to increase radiative recombination efficiency through greater overlap of electrons and holes.


Initial efforts in this direction involved the growth August/September 2011 www.compoundsemiconductor.net 75


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180