This page contains a Flash digital edition of a book.
review  research


Dots bolster their telecom credentials


Quantum dots enable long-wavelength telecom lasers to combine sufficient output with incredibly low noise figures


ENGINEERS from National Research Council Canada claim to have fabricated the first quantum dot lasers operating at


wavelengths longer than 1.5 µm that exceed the 10 mW output power requirement for optical communications.


The team’s single-mode laser produces a continuous-wave output of 18.5 mW at


1.52 µm. Although the emission needs to be increased to 1.55 µm before this class of laser can serve telecom networks, lead-


author Zhenguo Lu says that this next step is fairly simple. “The grating period is easily


changed to obtain operation at 1.55 µm,” says Lu, “and we have demonstrated quantum dot operation over the C- and L- bands through controlling dot size.”


Figure.3 Lasing spectra of the cylinder microlaser at the injection current of 45mA measured from (a) port-a and port-b,and (b) port-a at room temperature.The inset in (b) is measured at 25 mA and 25 °C.


Compared to the cylinder microlaser with one output waveguide and degenerate lasing modes, the researchers found that the cylinder microlasers with two output waveguides are better in realising single transverse mode operation.


Some of the high Q confined modes in the microcylinder resonator with one waveguide will experience high coupling loss to the second waveguide as adding another waveguide to the resonator, so less high Q modes exist in the microcylinder with two waveguides.


The physicists expect that a multiple-port cylinder microlaser can be a multiple light source in photonic integrated circuits with the output waveguides as light modulators, or two waveguides can form a compact Mach-Zehnder modulator.


J.-D. Lin et al. accepted for publication in Electronics Letters


Theoretical benefits associated with switching the active region in a laser from quantum wells to quantum dots include a narrower linewidth and superior temperature performance. The team’s device fulfils the first of these promises – the linewidth is less than 150 kHz, compared to 2-20 MHz for commercial, distributed feedback (DFB) lasers with quantum-well active regions. However, the quantum dot laser falls short on the second promise. “As of yet, InP-based quantum dot lasers have not shown the dramatic improvements in the characteristic temperature predicted for dot-based lasers,” says Lu. “They show values similar or slightly better than quantum well-based devices.”


Fiber-pigtailed packaged,quantum- dot,distributed feedback laser


Laser fabrication begins with the growth by chemical beam epitaxy of epistructures featuring InAs quantum dots on InP substrates. The undoped active region contains five stacked layers of dots with a density of 4 x 1010


cm-2 , sandwiched


between 30 nm-thick InGaAsP barriers. After growth of the active core, the wafer is removed to define a grating with a HeCd laser and subsequent chemical etching. Following the formation of this grating with a 236 nm period, MOCVD is employed to add a p-type contact. A single lateral mode, ridge-waveguide laser is formed from the epiwafer with a cavity length of 1 mm and a stripe width of 3 µm.


This device has a threshold current of 48 mA and produces 18.5 mW when driven at 200 mA. Relative intensity noise (RIN) for this laser is –154 to –162 dB/Hz. According to Lu, this compares favourably with both commercial quantum well DFB lasers, which have a RIN of typically –130 to –150 dB/Hz, and commercial quantum- dot-based lasers that are usually specified to have RIN values below –130 dB/Hz.


A cross-sectional scanning electron microscope image of the quantum- dot,distributed feedback laser structure showing the five-layer quantum-dot core and the floating grating.Distances (1) and (2) are 117nm and 119 nm,respectively


“The potential is there for high-volume commercial laser fabrication,” says Lu, who explains that the quantum dot lasers were made in a commercial foundry using a standard commercial process. “The only difference was the use of a quantum dot core rather than a quantum well, but that makes no difference for the processing.” Although chemical beam epitaxy is not widely used in foundries, MOCVD has been used by some groups to make quantum-dot lasers on InP.


Z. Lu et al. Electron. Lett 47 818 (2011) August / September 2011 www.compoundsemiconductor.net 43


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180