This page contains a Flash digital edition of a book.
news digest ♦ Power Electronics


including over $60B in visible lighting applications and over $30B in power electronics applications.


Industry and academia power on to develop nanoscale technology


Southampton University and Oxford Instruments have worked together to develop a range of processes which will be used to make nanoscale transistors.


The UK based organisations recently demonstrated the success of an industrial collaboration which is creating the cutting-edge nanotechnology needed for smaller, low power devices.


The ‘Knowledge Creation Partnership – From Funding to Results’ workshop at the University of Southampton, attracted a high level of interest, with talks by University researchers in nanotechnology and industrialists from Oxford Instruments Plasma Technology.


They described how the two organisations have partnered during a two year collaboration to develop nanotechnology tools. Combining the University’s knowledge and research with Oxford Instruments’ tools has already produced results, and these were presented by Peter Ashburn from the University, Mike Cooke, CTO at Oxford Instruments, and their colleagues.


between science and the consumer.” Frazer Anderson, Oxford Instruments Plasma Technology’s Business Development Director comments, “Through collaborations with some of the world’s leading scientists and institutions, companies like ours turn smart science into commercially successful products.”


Peter Ashburn, of the University’s Nano Research Group within ECS-Electronics and Computer Science is very positive about the collaboration, “Our University and Oxford Instruments have worked together to develop a range of processes for the company’s tools which will be used to make nanoscale transistors. These new plasma- based technologies provide etching and deposition functions on nanoscale materials and are being used in the Southampton Nanofabrication Centre, one of Europe’s leading multidisciplinary state-of- the-art cleanroom complexes.”


New SiC JFETs propel SemiSouth into high-end audio market


SemiSouth says its latest silicon carbide devices are 15% cheaper than conventional SiC JFETs and are particularly suited for high end audio amplifier designs demanding the best linearity performance and lowest distortion.


SemiSouth Laboratories has launched a new family of low cost SiC JFETS with very good linearity targeted at high-end audio applications.


The University of Southampton Cleanroom (Image courtesy of University of Southampton)


“We recognise the importance of partnerships between the commercial and the academic sectors, in today’s highly competitive, fast moving and demanding global markets, and at Oxford Instruments we see businesses forming the bridge


152 www.compoundsemiconductor.net August/September 2011


The SJEP120R100A and SJEP120R063A are claimed to offer best–in-class distortion. Compatible with standard gate driver ICs, both versions feature a positive temperature coefficient for ease of paralleling; extremely fast switching with no ‘tail’ current at up to a maximum operating temperature of 150 0 C and a low RDS(on)max of 0.100Ω and 0.063Ω respectively. Devices are available in TO- 247 packages; the 100mΩ part is also available in die form for integration into modules.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180