transistor architectures technology
Another feature of our transistor is its barrier thickness of only 9 nm, which leads to a significant improvement in the modulation efficiency of the electrons in the GaN channel by the gate electrode. Our device also contains a 3.3 nm InGaN back-barrier structure underneath the GaN channel that helps to mitigate short-channel effects top barrier scaling. And last but by no means least, we have introduced an oxygen plasma treatment step prior to gate metal deposition that increases the frequency of the transistor by at least 30 percent, due to elimination of transconductance dispersion at high frequencies.
Another device that is showing great promise for sub- mm wave applications is the GaN/AlGaN transistor that has a nitrogen-face GaN structure. This device has several advantages over its conventional equivalent with a gallium-face. One of the biggest benefits results from the formation of the two-dimensional electron gas on top of the AlGaN layer, which occurs because the polarization in this transistor is inverted compared to the standard Ga-face AlGaN/GaN/AlGaN one.
Thanks to this switch in the direction of polarization, a top nitride barrier is not needed – an omission that paves the way to obtaining a very low contact resistance. What’s more, the bottom AlGaN layer that induces the two-dimensional electron gas also leads to excellent channel confinement, a characteristic that enables a high output resistance even in deep- submicron devices. Unlocking the benefits of these nitrogen-face devices has traditionally been very tough, because it is tricky to grow high-quality GaN with a nitrogen-face. But continued efforts in this direction have recently led to substantial improvements in material quality, and researchers at the University of California, Santa Barbara, have reported some excellent results.
That team has produced N-face devices with a 0.7 µm gate with a power-added efficiency of 74 percent at 4 GHz and fT
/ fMAX gate length have shown a maximum fT
while the optimization of the gate structure allows an fMAX
More recently,we have set a new benchmark for InAlN/GaN transistors,working in close
collaboration with the University of Notre Dame and the companies TriQuint and IQE. Our 30 nm gate length device produces an fT
made from this material system are delivering promising results. Transistors made by a team at the National Institute of Information and Communication Technology in Japan with gate lengths of 250 nm and 60 nm have delivered fT
and fMAX combinations of 52 GHz and 60 GHz,
and 107 GHz and 133 GHz, respectively. However, even more impressive results are possible by applying a combination of a re-growth contact and back-barrier structure. Engineers at HRL have pioneered this approach, and produced a 45-nm gate length device with an fT
of 260 GHz and a fMAX of 394 GHz. The latter value is a record for GaN transistors.
The results outlined above showcase the tremendous improvements in all three classes of novel nitride transistor over the last few years. And the race is certainly on to break the 500 GHz barrier, a target that would have seemed far-fetched in the not-to-distant- past. Once that record has been claimed, many will rejoice at the fabrication of transistors that combine speed with great efficiencies and output power levels at mm- and sub-mm wave frequencies that are orders of magnitude higher than what exists today. Hopefully the wait will be a short one.
of 15 / 42 GHz. Devices with a 100 nm of 163 GHz,
as high as 310 GHz in transistors with a gate length of 70 nm. These transistors also feature an unalloyed ohmic contact with a contact resistance of just 0.027 ohm-mm, which was formed via InGaN re-growth. This technology has also been used to produce self- aligned devices.
The third class of novel device – a heterostructure transistor formed from the pairing of AlN and GaN – has also been piquing the interest of the wide bandgap microelectronics community, due to its potential for forming highly scaled transistors. Thanks to a very large polarization discontinuity between the two nitrides, such structures can yield a charge density well in excess of 2x 1013
cm-2 , which in turn leads to a room-temperature
sheet resistance of 150-180 ohm/. In addition to this strength, the ultra-thin AlN barriers that are typically used in these devices can significantly mitigate degradation caused by short-channel effects. Devices
Figure 2: Small signal, high frequency
performance of the InAlN/GaN HEMT
produced by MIT. The gate length of this transistor is just 30 nm
August / September 2011
www.compoundsemiconductor.net 35
© 2011 Angel Business Communications. Permission required.
of 300 GHz, the highest cut-off frequency ever reported for GaN transistors
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180