This page contains a Flash digital edition of a book.
industry  CPV


CPV is providing power to the City Coachella Water Treatment Facility in Coachella,CA.This allows the city to purchase less power,particularly during the high-value post noon hours,including into the early evening peak period


increase over the next few years will restrict the success of start-ups. “Of those 15-20 start-ups, there will be two or three winners,” says Hartsoch, who believes that those that succeed will be those that can win investment, scale up capacity and partner with CPV firms to secure initial business.


“It’s an exciting part of the business, with no other technology can you be so flexible at adopting an


The synergy of Soitec and Concentrix


The French firm Soitec is renowned for its Smart Cut technology that enables the separation of incredibly thin, single-crystal layers from a substrate, which can be used over and over again. This technology promises to deliver major benefits to triple-junction solar cell production, which is the reason behind Soitec’s acquisition of Concentrix in late 2009.


One advantage of the Smart Cut approach is that it increases the freedom of choice for the materials in the cell, because these layers do not have to be lattice-matched to one another. The upshot is that compositions can be optimised for spectral absorption and current output, enabling a higher efficiency for the device. It is also possible to use materials with greater purity, which have been formed in ingots rather than epi-chambers.


Soitec is developing its novel technology for triple-junction cells in collaboration with: CEA-Leti, Grenoble, which is focusing on Smart Cut technology; and the Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany, which is concentrating on epitaxy and cell manufacturing. Cell production is scheduled to begin in 2014 or 2015. The cells will only be used internally, and Soitec is yet to decide whether these devices will be produced in-house or with an external partner.


40 www.compoundsemiconductor.net August / September 2011


advancement as you can with CPV systems.” Lerchenmüller believes that cell producers can gain the edge over their rivals by adopting the mindset of companies operating in the silicon industry. “You have to provide a better product next year at a lower cost – full stop.” If companies of any size can take on this attitude and execute of this front, they will stand a far better chance of qualifying product with Soitec.


Meanwhile, SolFocus’ bugbear with cell suppliers has been a lack of commercial processes such as outgoing test, but these chipmakers are making progress in this direction. “Historically, because they were cells used in space, 100 percent incoming inspection was standard,” explains Hartsoch. One way that some cell start-ups are trying to stand out from the crowd is by developing triple-junction devices with novel architectures that offer spectral tuning.


Lerchenmüller believes that this is an important feature, but does not see a big advantage at site-specific tuning at present, because there is a high degree of similarity in the spectral profile of sunlight at many of the sites where CPV will be deployed over the next few years: “A typical site for large installations is California, in areas that are elevated, but not too highly elevate.” He adds that most sites with a high value of direct normal irradiance have a similar spectrum, and says that a choice of cells is only needed once the market has grown substantially to several GWs or more. “We believe that the CPV market, by 2015, can be as high as 1.8 GW.” If he’s right, the ramp in CPV deployments during the next few years is going to be breathtakingly fast.


© 2011 Angel Business Communications. Permission required.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180