This page contains a Flash digital edition of a book.
research  review

Complex barrier boosts UV output

Japanese researchers have developed a complex electron-blocking region that can increase electron injection and deliver a massive hike in ultraviolet LED output.

Switching from a conventional single barrier to a multi-quantum barrier led to a seven- fold increase in the output of a 250 nm LED. The latter device delivered a maximum output of 15 mW, and a peak external quantum efficiency of 1.5 percent.

The team of researchers from RIKEN, Saitama, and CREST estimate that the modification to the barrier increased electron injection efficiency from 22 percent to 75 percent. Low injection efficiency - which results from a combination of electron leakage from the active region into the p- type layers, and low hole concentration in AlGaN layers with an aluminum content of 70 percent or more – is a major factor limiting the output of ultraviolet LEDs.

Lead author Hideki Hirayama told Compound Semiconductor that the team selected the thickness of the barrier and valley layers in their multi-quantum barrier to enhance its electron reflection. Calculations suggest that the effective height of the barrier is two-to-three times that of a single barrier.

Low-pressure MOCVD was used to grow the ultraviolet LED structure on a low- threading-dislocation density AlN buffer that was 3.4 µm thick, and had an “edge-type” dislocation density of 7 x 108 cm-2.

The ultraviolet LED structure consisted of: a

The multi-quantum barrier has increased the output power and the external quantum efficiency of ultra-violet LEDs.

2 µm-thick, silicon doped Al0.77Ga0.23N buffer; a three layer multiple quantum well

with 1.5 nm undoped Al0.62Ga0.38N wells and 6 nm Al0.77Ga0.23N barriers; a 25 nm-thick undoped Al0.77Ga0.23N barrier; a five layer multi-quantum barrier with 4 nm-

thick, magnesium-doped Al0.95Ga0.05N barriers and 5 nm-thick magnesium-doped

Al0.77Ga0.23N inter layers; a 25 nm-thick, magnesium-doped Al0.77Ga0.23N layer; and a 60 nm-thick, magnesium-doped

contact layer. Both electrodes were made from Ni/Au, and the p-type electrode was 300 µm x 300 µm.

The LED described in the Japanese team’s paper had an operating voltage of 32 V at

20 mA current. According to Hirayama, this high voltage stems from the 1 mm separation between the two electrodes. They have now reduced this distance with a flip-chip device geometry, and the operating voltage has plummeted to just 8V.

Improvements in light extraction efficiency are now on the agenda. The latest devices extract just eight percent of the light, and the team plans to improve this figure by a factor of five.

H. Hirayama et al. Appl. Phys. Express 3 031002 (2010)

http://www.riken.go.jp/r-world/info/ release/press/2010/100225/index.html

Double barrier increases MOSFET mobility

Scientists from the University of Texas at Austin have broken the channel mobility record for an inversion-type/accumulation- type III-V MOSFET.

The key to realizing a mobility of 4729 cm2/Vs was the addition of an

InP/In0.52Al0.48As barrier on top of the transistor. This addition reduces the chance of electrons spilling over from the channel to the barrier, where mobility is compromised.

A higher mobility of 5500 cm2/Vs has been reported in an III-V MOSHEMTs-like

50 www.compoundsemiconductor.net April/May 2010

structure, which has channel electrons provided by a silicon δ-doping layer, rather than a gate bias. However, realizing this higher mobility comes at the expense of fabricating a more complicated structure, according to team-member Jack Lee.

The University of Texas researchers could further increase the channel mobility of their devices by increasing the thickness of their InP layer in the barrier beyond 5 nm.“But we have not tried [this] because the short channel effect would be much more severe,” says Lee. “ In our work we used long

channel devices [with a length of 20 µm], where short channel effects are not a problem.”

The team now plans to work on devices with new channel layers, such as InAs, which promise even higher mobility. “We will also measure effective channel mobility for III-V MOSFETs at different temperatures, and find scattering mechanisms that influence channel mobility,” says Lee.

H. Zhao et al. Appl. Phys. Lett. 96 102101 (2010) Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272
Produced with Yudu - www.yudu.com