This page contains a Flash digital edition of a book.
interview  industry

operates with clearances set to account for the thermal properties of the gas, and integrates a progressive nitrogen purge capacity to offset the challenges of pumping this lighter gas at higher pressures. Finally, since hydrogen is flammable if mixed with an oxidant such as air, the pump exhaust must be appropriately managed to avoid ignition.

Figure 2: Edwards’ iXH dry vacuum pump has been specifically designed to handle the high volumes of ammonia and hydrogen involved in HBLED production

pumping at low pressures, they become a problem when the gas is compressed towards atmospheric pressure in a vacuum pump. At these pressures, due to its low viscosity, hydrogen tends to leak back through pump clearances, reducing the effective pumping speed. Hydrogen also has a much higher thermal conductivity (seven times greater) than heavier gases such as nitrogen. As a result, systems pumping hydrogen typically have a different thermal profile and different component dimensions than those pumping nitrogen. A pump optimized to deal with hydrogen ideally

No. tools per abatement system Fresh water cost Waste water cost Power cost

Nat. gas cost H2 cost

CDA cost H2SO4 dosing cost NH3-N treatment by Gas striping tower

Value of Ammonium sulphate recovered from gas stripping Heat recovery N2 Cost

GaNcat cartridges/year GaNcat Cartridges disposal costs/year

Potential value of heat recovered from exhaust gas

Total Utility Cost

As mentioned earlier, pumps used in the metalorganic chemical vapor- phase deposition (MOCVD) processes used to manufacture LEDs also handle high volumes of ammonia. This means they must be highly corrosive-resistant. Modular dry pumps have proven to address the challenges of pumping both ammonia and hydrogen in a production environment, while also offering potential CoO savings. Edward’s iXH pump (Fig. 2), for example, has been specifically designed to meet the challenges associated with pumping high volumes of ammonia and hydrogen with enhanced purge flow, temperature-controlled operating range, light gas performance and corrosive resistance and improved

Abatement System SG3000

6

$0 $0

$4,505 $2,147 $501 $0 $0 $0

$0

-$20,000 $158 $0 $0

$0

-$12,689 $4,702

Figure 3: Cost Comparison of Operating Costs for Combustion-Based Systems vs. Wet Scrub Abatement Systems

Wet

3

$4,505 $0

$751 $0 $0 $0

$1,430 $751

-$2,893 $0

$158 $0 $0

powder handling. In addition, Edwards’ pumps incorporate a unique, proprietary seal technology that helps to prevent ammonia leaks. These capabilities reduce maintenance intervals and extend pump life, thereby helping to reduce overall tool CoO. The vacuum pump offers further CoO savings through reduced energy consumption.

Exhaust Gas Abatement

In LED manufacturing, the extraction, safe handling and disposal of gases from MOCVD processes significantly contribute to manufacturing CoO. The conventional approach to exhaust gas management uses a wet scrubbing technology that adds significant costs to the manufacturing process in terms of energy use, water consumption and treatment.

Combustion-based abatement offers an attractive alternative to wet scrubbing. While capital costs are approximately the same, combustion- based abatement systems offer greatly reduced operating costs, as illustrated in Figure 3. Their large input flow capability, typically equivalent to three to five process tool exhausts, eliminates capacity constraints and helps minimize capital expenditures. At the same time, their use of the exhaust gases as the main fuel in the abatement process significantly reduces energy costs. In addition, innovative reaction chemistries minimize the formation of unwanted by-products such as nitrogen oxides (NOx), a regulated emission, or ammonium solids, which require increased system maintenance downtime, thereby reducing tool productivity.

The wet scrubbing technology typically used in the GaN MOCVD process essentially bubbles the gases through a tub of water where they are absorbed. This process, however, does not remove hydrogen, which is the most common waste gas produced in the MOCVD process. While hydrogen emissions are not regulated, allowing the gas to be vented directly into the

April/May 2010 www.compoundsemiconductor.net 37 Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272
Produced with Yudu - www.yudu.com