This page contains a Flash digital edition of a book.
SiGe  technology

B

and-gap engineering is one of the most important guidelines to design new semiconductor alloys and devices. For the last 60 years, two important semiconductor alloy engineering models were developed for band-gap engineering; the cubic crystal structure model shown in Figure 1-(a) and hexagonal crystal structure model shown in Figure 1-(b). The first cubic crystal model includes group IV semiconductors (Si,Ge,C) of diamond structure, and group III-V (GaAs, InP, etc.) and group II-VI (ZnSe, CdTe, etc.) semiconductors of cubic zinc-blende structure. The second hexagonal crystal model includes III-Nitride semiconductors (GaN, AlN, InGaN, etc.) and hexagonal SiC semiconductors.

Our team at NASA Langley Research Center proposed and proved that a third alloy engineering model - “rhombohedral-trigonal crystal model” - can be established between the cubic one and hexagonal one. A simple diagram of rhombohedral-trigonal crystal model is shown in Figure 1-(c). In details of the new model, a general cubic crystal is not only a special case of tetragonal crystal but also a special case of a rhombohedral crystal with inter-planar angle of 90°. When a cubic crystal is strained in the [111] direction, it becomes a rhombohedron. Thus, a cubic crystal belongs to a rhombohedral crystal group.

Additional mathematical transformation equation transforms any rhombohedral crystal into a trigonal crystal in hexagonal frame. Therefore, cubic crystals belong to a more general trigonal crystal group and the epitaxy between cubic crystals and trigonal crystals can be established not as an accidental coincidence-lattice- matching but as a fundamental crystal symmetry relation. Figure 1-(d) shows such an example of rhombohedrally aligned cubic SiGe on trigonal c-plane sapphire. The problem of this epitaxy is that two crystal structures which are twin to each other can be formed as shown in Figure 1-(e), the top view. This twin defect was a major problem in the rhombohedral epitaxy and has hindered further applications so far.

However, we found that optimized growth under new X- ray diffraction (XRD) characterization can eliminate twin defect and form single crystalline rhombohedral SiGe layer on c-plane sapphire in one of the crystal alignment of Figure 1-(e). This is because threefold symmetry of a trigonal crystal prefers one rhombohedrally aligned cubic crystal to the other. Thus, a symmetry breaking occurs between two cubic crystals that are rotated by 60° from each other, i.e. one cubic crystal becomes dominant and the other cubic crystal diminishes.

The discovery of super-hetero-epitaxy growth technology for rhombohedral single crystalline SiGe on c-plane sapphire was confirmed by the NASA-invented new XRD methods: (1) Total defect density measurement and (2) Spatial wafer mapping method (see further reading,

Figure 1. Crystal structure of (a) cubic zinc-blende or diamond structure, (b) hexagonal Wurtzite structure, (c) crystal symmetry group relation, (d) Rhombohedrally aligned SiGe on c-plane Sapphire, (e) two possible alignments of SiGe on trigonal c-plane Sapphire, twin to each other

Figure 2. Innovative patented XRD methods characterize integral density and spatial distribution of twin defects

patents pending 2, 4, and 5). Figure 2 shows the characterization results by XRD. Innovative XRD wafer mapping method shows spatial distribution of major single crystalline SiGe (99.8%) (Left image) and twin defect SiGe (0.1%) (Right image) that exist on the same sapphire wafer clipped by three plastic jaws outside. Twin crystal defect is reduced to below 0.1% and it exists only at the edge of a wafer. The successful development of rhombohedrally aligned SiGe has also led the inventors to construct a new hybrid bandgap engineering diagram with transformed lattice constants. In conventional cubic bandgap engineering diagram, the distance of [100] vector, i.e. lattice constant of a cube is used as coincidence lattice distance. On the other hand, conventional hexagonal bandgap engineering diagram uses the distance of basal plane basis vector as

April/May 2010 www.compoundsemiconductor.net 19 Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272
Produced with Yudu - www.yudu.com