search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Nagel-Myers et al.—Devonian bivalve ecophenotypic flexibility


significantly different from those of the silt (PC 4, p=0.03) and fine silt samples (PC 1, p=0.02). On average, this mud-morph


develops broader, circular shell disks with longer posterior sulci than the specimens from coarser sediments (Fig. 5.4). Skaneateles and Ludlowville formations (Table 1) include


comparable numbers of specimens from the three lithofacies, but the Moscow Formation includes more specimens from the muddy facies. The overrepresentation of one facies in the youngest samples might have biased the data toward morpho- logies more prevalent in the muddy facies. A CVA analysis of the differences among specimens


grouped by stratigraphic position and facies relative to within- group variance (Fig. 6) demonstrates no clear separation of groups. Comparing stratigraphic units, CV 1 axis comprises 80% and CV 2 axis 20% of the variation; examining facies groups, CV 1 represents 59% and CV 2 41% of the variation. Most of the difference among groups can be found in develop- ment of the posterior sulcus and its orientation in relation to the hinge line. Skaneateles and Ludlowville formation specimens occupy much of the same morphospace. Material from the Moscow Formation is more variable, encompassing much of the range of both Skaneateles and Ludlowville formations (Fig. 6.2). Comparing the different lithofacies groups, the CVA


Table 2. P-values of Mann-Whitney pairwise comparison of samples grouped by stratigraphic units using PC 1 and PC 2 values; asterisk denotes significant p-value.


PC 1 PC 2 PC 3 PC 4


Skaneateles/Ludlowville Ludlowville/Moscow Skaneateles/Moscow <0.001*


0.81 0.40 0.11


0.15 0.87 0.10 0.36


<0.001*


0.02* 0.70 0.12


Table 3. P-values of Mann-Whitney pairwise comparison of samples grouped by lithofacies (PC 1 through PC 4 values); asterisk denotes significant p-value.


PC 1 PC 2 PC 3 PC 4


mudstone/fine siltstone mudstone/siltstone fine siltstone/siltstone 0.02*


0.21 0.13 0.28


0.18 0.09 0.36


0.03*


0.06 0.63 0.19 0.08


395


expresses variation of the outline from more circular (CV 1) to more retrocrescent (CV 2) as the main difference among the three lithofacies (Fig. 6.1). Shell disks of specimens from the


muddy facies are, on average, rounder, whereas specimens from fine silt and silt vary along the CV 2 axis, with fine silt samples being more retrocrescent than those from the silt facies.


Discussion


It has been postulated that coordinated stasis is not only expressed in the taxonomic composition of a particular marine benthic community, but is also reflected in lineage-level morphological stasis (Brett, 2012). For example, Lieberman et al. (1995) found morphological fluctuation in two brachiopod lineages rather than directional morphological change; our data support these results. Our results show that specimens from the Ludlowville Formation develop, on average, shell disks that have a slightly wider posterior sulcus and are anteroposteriorly shortened compared to older specimens from the Skaneateles Formation. The Moscow variant generally develops more circular specimens with longer posterior sulci, resulting in a slightly greater difference between the youngest samples and the rest. Despite these differences, the overall variability in the Actinopteria boydi lineage is generally not great. We found a statistical difference between the oldest Skaneateles Formation and the Ludlowville and Moscow samples, but these are limited to PC 1, which accounts for only 32% of the variation. Despite this difference, no distinct morphotypes distinguishing these two stratigraphic levels can be observed in the PCA analysis (Fig. 5). The variation captured is mostly driven by the greater variability of Ludlowville specimens’ outlines, but is not great enough to establish distinct morphological groups from the examined stratigraphic units. The difference between Skaneateles and Moscow forma-


tions found in PC 1 and PC 4 seems to be an expression of the high proportion of mud morphs included in the Moscow mate- rial. Although only 1.9% of Skaneateles specimens are from this lithofacies, mud morphs comprise 41.4% of the Moscow specimens (Table 1). The overrepresentation of the distinctly different variant (see below) combined with a small sample size


Figure 6. Canonical variate analysis based on shape variations, grouped by facies (1) and stratigraphic position (2), all showing 90% confidence ellipses of population mean. fs = fine silt; GIV-1 = Skaneateles Formation; GIV-2 = Ludlowville Formation; GIV-3 = Moscow Formation; s = silt; m = muddy.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220