search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Webster and Hageman—Buenellus chilhoweensis n. sp. (lower Cambrian Chilhowee Group)


and Eriksson, 1989; Walker and Driese, 1991; Smoot and Southworth, 2014). Synrift volcanics of the Catoctin Formation (underlying the Weverton formations in Virginia, Maryland, and Pennsylvania) have radiometric ages of 572±5to 564±9Ma (Aleinikoff et al., 1995), and are therefore late Ediacaran in age. Although speculated upon (King and Ferguson, 1960; Smoot and Southworth, 2014), correlative relationships between the Catoctin and Unicoi basalts have not been established. Compressed carbonaceous tubes within the middle Unicoi


Formation are similar to problematic fossils found in Ediacaran assemblages elsewhere (Hageman and Miller, 2016). Trace fossils suggest that the Ediacaran-Cambrian boundary lies within the upper portion of the Unicoi Formation (Walker and Driese, 1991; Hageman and Miller, 2016). The middle Chilhowee Group, a 200–800m thick succes-


sion of sand, silt, and shale, is mapped as the laterally equivalent Nichols Shale and Hampton Shale in Tennessee and southern Virginia (Fig. 2.1). The Harpers Formation of northern Virginia, Maryland, and Pennsylvania has usually been considered to be a northern lateral equivalent of the middle Chilhowee Group (e.g., King, 1949; King and Ferguson, 1960; Cudzil and Driese, 1987; Walker and Driese, 1991), but has recently been proposed to correlate to the younger Murray Shale (Smoot and Southworth, 2014; see also Bloomer and Werner, 1955). (Smoot and Southworth [2014] instead suggested that the Loudon Forma- tion of Maryland and Pennsylvania is age-equivalent to the Nichols and Hampton shales [Fig. 2.1].) The contact between the lower and middle Chilhowee Group appears to be con- formable (Mack, 1980). The middle Chilhowee Group repre- sents a marine transgression in a prodeltaic to low-energy mud shelf setting that was episodically affected by storms (Walker and Driese, 1991). A thick black mudstone interval within the lower part of the Nichols Shale of Tennessee was deposited during the time of maximum flooding; the rest of the Nichols Shale represents a highstand systems tract (Mack, 1980; Simpson and Eriksson, 1990; Tull et al., 2010). Trace fossil assemblages from the middle Chilhowee Group indicate that the Cambrian Substrate (Agronomic) Revolution had initiated (Hageman and Miller, 2016). However, searches for body fossils have met with little or no success (Laurence and Palmer, 1963; Neuman and Nelson, 1965; Appendix): only a single, fragmentary, conical shelly fossil of uncertain affinity has been reported (Simpson and Sundberg, 1987), and the biogenicity of even that specimen has been questioned (Hageman and Miller, 2016). The upper Chilhowee Group is a siliciclastic succession that accumulated on a passive margin. Eustatic sea level control


445


on sedimentation is evident in the form of two transgressive sequences (Tull et al., 2010; Smoot and Southworth, 2014; Hageman and Miller, 2016). In southern and eastern Tennessee, the first of these transgressive sequences is represented by the Nebo Quartzite and overlying Murray Shale (Fig. 2). The Nebo Quartzite contains abundant Skolithos burrows (King, 1949; King and Ferguson, 1960; Neuman and Nelson, 1965; Appendix), but nothing of highly refined biostratigraphic utility. The contact between the Nebo Quartzite and the Murray Shale is transitional, with some interbedding of lithologies (Whisonant, 1974). Laurence and Palmer (1963, p. C53) noted that at Murray Gap on Chilhowee Mountain (see below and Appendix) the Murray Shale is 107m (350 ft) thick and consists of three units of roughly equal thickness: “a lower unit consisting of bluish- gray noncalcareous shale with scattered quartz grains and


muscovite flakes up to about 1mmacross and occasional biotite flakes and glauconite grains; a middle unit which is principally a dark-gray muscovite-bearing fine siltstone and which, when weathered, yields buff chips similar to the weathered shale of the


bottom unit; and an upper unit consisting of siltstone, shale, and fine-grained sandstone with many glauconitic layers.” Rb-Sr dating of glauconite grains within the Murray Shale indicates an age of 539±30Ma (Walker and Driese, 1991 [recalibrating the work of Hurley et al., 1960]; see Holmes,1959 and Cowie, 1964 for earlier dating efforts). Fossils from the Murray Shale are the main focus of this paper and are discussed in following sections. The interval of maximum transgression is located within the Murray Shale. The Murray Shale is in sharp but conformable contact


with the overlying Hesse Quartzite (Whisonant, 1974); this transition represents a return to shallow-water wave and tidally influenced conditions. The Hesse Quartzite is a quartz sandstone that contains Skolithos burrows (Neuman and Nelson, 1965; Hageman and Miller, 2016). The second transgressive sequence is represented by the Hesse Quartzite and overlying Helenmode Formation (a quartz siltstone and sandstone with interbedded shale) (Fig. 2). In northeastern Tennessee these same four successive


lithostratigraphic units (Nebo Quartzite, Murray Shale, Hesse Quartzite, and Helenmode) are recognized as members within the Erwin Formation (e.g., King and Ferguson, 1960; Walker and Driese, 1991; Fig. 2). North of central Virginia, the fine- grained sediments of the Murray Shale have typically been considered to be absent and the facies of the Nebo and Hesse quartzites have been interpreted to merge and thicken, so that the entire upper Chilhowee Group is represented primarily by quartz sandstone mapped as the Antietam Formation (e.g., King, 1949; King and Ferguson, 1960; Cudzil and Driese, 1987;


Figure 2. Lithostratigraphic correlations for southern and central Appalachians. Central Appalachians includes central and northern Virginia (approximately north of Roanoke), Maryland, and Pennsylvania. (1) Chilhowee Group plus immediately subjacent and superjacent units. Traditional interpretation of correlation for central Appalachians follows most workers (e.g., King, 1949; King and Ferguson, 1960; Mack, 1980; Cudzil and Driese, 1987; Walker and Driese, 1991; Walker et al., 1994); alternative hypothesis from Smoot and Southworth (2014; gray shaded region indicates marked unconformity). Vertical scale arbitrary and non-uniform. Ediacaran–Cambrian boundary is likely in upper one-third of Unicoi Formation (Walker and Driese, 1991; Hageman and Miller, 2016), but age of base of Chilhowee Group in Tennessee is poorly constrained. (2) Working hypothesis of correlation and approximate ages of lithostratigraphic units of the upper Chilhowee Group. Circles indicate stratigraphic intervals within the upper Chilhowee Group that have yielded trilobites. Age assignment of Murray Shale in eastern Tennessee based on discovery of Buenellus chilhoweensis n. sp. (black circle), as described in present study. White circles indicate trilobite occurrences in uppermost Chilhowee Group of central Appalachians (see text). Laurentian series and stage subdivisions of Cambrian follow Palmer (1998); Begadean and Waucoban series together represent the traditional “lower Cambrian” of this paleocontinent. Age in millions of years before present (Ma) and potential placement of global Cambrian Stage 3-Stage 4 boundary taken from provisional Cambrian global correlation charts presented by Peng et al. (2012). Abbreviations: Fm., Formation; Mb., Member; Qzt., Quartzite.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220