search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
448


Journal of Paleontology 92(3):442–458


of Isoxys chilhoweanus at both sites (Walcott, 1890, p. 626) could be construed as biostratigraphic support for the Little River Gap fossils having also been sourced from the Murray Shale (contra the concerns reviewed above), but it is also possible that Isoxys chilhoweanus has a long stratigraphic range that spans both the Murray Shale and the Helenmode Formation. Our new discoveries (below; Appendix) demonstrate that Walcott’s original fossil collection at Little River Gap was indeed made in the Murray Shale.


Subsequent fossil discoveries.—Since those initial discoveries in the 1880s and 1893, several workers have searched for additional body fossils at Little River Gap and Murray Gap. For nearly seventy years such efforts were almost invariably unsuccessful (e.g., King et al., 1952; Neuman and Nelson, 1965), although Neuman and Nelson (1965) reported finding fragments of an inarticulate brachiopod in the Helenmode Formation at Little River Gap. However, new roadcuts at Murray Gap were made in 1962


occurrence of the bradoriid in the new roadcuts was sufficient for Laurence and Palmer (1963) to confirm assignment of the Murray Shale to the lower Cambrian, based on the occurrence of the genus (then identified as Indiana Matthew, 1902) in lower Cambrian rocks elsewhere in North America and Europe. However, the Murray Shale bradoriid has subsequently been reassigned to Indota Öpik, 1968 (Siveter and Williams, 1997), a widespread genus that apparently ranges into the early middle Cambrian (Williams et al., 2007). Indeed, based on tentatively proposed junior synonymies, Indota tennesseensis itself might occur in the Ordian Yelvertoft Beds of Australia (Öpik, 1968; Siveter and Williams, 1997; Jones and Laurie, 2006). The Ordian Stage of Australia has been hypothesized to correlate to the uppermost Dyeran and a portion of the overlying Delamaran stages of Laurentia (Kruse et al., 2009; Peng et al., 2012). Given that the Murray Shale can be no younger than mid- Dyeran (see above), this suggests that—if the Australian occurrence is correct and the intercontinental correlation is accurate—Indota tennesseensis must have a relatively long stratigraphic range. Wood and Clendening (1982, p. 259) documented the


(Fig. 3.2, Localities MG2 and MG3; Appendix). The fresh roadcuts exposed much of the Murray Shale, from which additional specimens of the bradoriid Indota tennesseensis were recovered (Laurence and Palmer, 1963). Those new specimens came from ~6.1–18.3m above the base of the Murray Shale (Laurence and Palmer, 1963, p. C53). Wood and Clendening (1982) subsequently collected the bradoriid from 6.3–10.6m above the base of theMurray Shale at the same locality. Tracks and trails, but no body fossils, were recovered from the overlying portion of the Murray Shale (Laurence and Palmer, 1963). Acritarchs were also described from the lower part (6.3–46.7m above the base) of the Murray Shale at those roadcuts (Wood and Clendening, 1982, their “locality 1”)and from asimilar stratigraphic interval in a roadcut in northeasternmost Tennessee (Wood and Clendening, 1982, their “locality 2”). Those discoveries offer limited biostratigraphic utility. The


acritarch Medousapalla choanoklosma Wood and Clendening, 1982, which subsequently was recognized as a junior synonym of Skiagia ornata (Volkova, 1968) (see Zang, 2001 for taxonomic


revisions), from 10.6m above the base of the Murray Shale at their Locality 1. Skiagia ornata is widespread and has a long stratigraphic range, spanning from approximately the base of the trilobite-bearing portion of the traditional lower Cambrian through into the traditional middle Cambrian (Zang, 2001; Moczydlowska and Zang, 2006). The occurrence of this acritarch in Tennessee therefore suggests that the lower part of the Murray Shale is probably no older than the base of theMontezuman Stage. In summary, previous work unambiguously demonstrates


that the Murray Shale contains Isoxys chilhoweanus, Indotes tennesseensis, hyoliths, acritarchs, and abundant trace fossils. We herein confirm that the olenelline trilobite reported by Walcott (1890, 1891) was also sourced from the Murray Shale. The presence of brachiopods within the Murray Shale, as reported by Keith (1895), cannot be unambiguously substan- tiated due to vague documentation of the site(s) of collection and apparent loss of the specimens: it remains possible that they were actually sourced from the Helenmode Formation. The hitherto described and formally named fossils that were undoubtedly sourced from the Murray Shale, in combination with constraints imposed by the underlying and overlying units, suggest that the age of the base of the Murray Shale is no older than Montezuman (~520 Ma) and the top of the unit is no younger than mid-Dyeran (~514 Ma).


New paleontological work on the Murray Shale


The new trilobite-bearing locality.—Recent fieldwork on Chilhowee Mountain to the northeast of the classic Little River Gap roadcut resulted in the discovery of a 2m thick exposure of the Murray Shale (Fig. 3.1, Locality CM3; Appendix) that yielded a well-preserved cephalon of an olenelline trilobite (Hageman and Miller, 2016, fig. 7d) plus abundant hyoliths. Subsequent visits to the site have yielded six additional specimens of that trilobite, described below as Buenellus chilhoweensis n. sp. (see Systematic Paleontology section). The trilobite-bearing exposure is located in the bank of a


jeep trail on an otherwise forested hillside, and attempts to measure a stratigraphic section are frustrated by vegetation and soil cover. Nevertheless, it can be ascertained that the trilobite occurs in the upper portion of the Murray Shale within a few meters of the base of the overlying Hesse Quartzite. Other fossiliferous horizons on the hillside—lower within the Murray Shale and in stratigraphically underlying units—are consistent with this determination (see Appendix). Walcott’s original trilobite specimen (Fig. 4.8) is con-


specific with Buenellus chilhoweensis n. sp. The lithology of the newly discovered trilobite-bearing site matches that of the slabs bearing Walcott’s original trilobite specimen and the type material of Isoxys chilhoweanus. It is therefore possible that Walcott’s (1890, 1891) “Little River Gap” locality included


material sourced from the Murray Shale on the northwest-facing flank of Chilhowee Mountain northeast of Little River Gap, and maybe even from the trilobite-bearing site described herein (as was believed by Hageman and Miller, 2016, p. 146). Walcott’s (1891, p. 302) statement that his fossils were recovered from “about 20 feet above the quartzite in the upper shale bed” offers a potentially testable means of determining whether the new site is a re-discovery (or at least a stratigraphic


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220