search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Webster and Hageman—Buenellus chilhoweensis n. sp. (lower Cambrian Chilhowee Group)


Appendix: Localities Little River Gap area,Walland, TN


Original locality of Walcott and Keith.—Walcott (1890) and Keith (1895) reported finding fossils on the east side of Little River Gap, which is a river gorge cut through Chilhowee Mountain near the town of Walland (Fig. 3.1). This site was subsequently referred to as “USNM Locality 17” by Resser (1938; the Little River Gap locality was also mentioned by Resser [1933, p. 746], but was erroneously stated to be in Virginia). The fauna definitely known from USNM Locality 17 consists of Buenellus chilhoweensis n. sp. (Fig. 4.8), the arthropod Isoxys chilhoweanus, the bradoriid Indota tennes- seensis, and the hyolith figured by Resser (1938, pl. 4, fig. 31). It is also possible that the brachiopods mentioned by Keith (1895) were sourced from this locality, although some of or all those specimens might have been collected from the Murray Gap area. The precise location of the original fossil-bearing site at


Little River Gap is not known. Labels on the specimens denote only that the locality was at “the east end of the Little River Gap, Chilhowee Mountain, Tennessee” (Neuman and Nelson, 1965, p. D29). This vagueness, combined with the failure of sub- sequent investigators to discover additional fossils in the area (e.g., King et al., 1952, p. 15), also led to uncertainty over the stratigraphic provenance of the original fossils. Although the fossils were stated to have been collected from the Murray Shale (Keith, 1895), King et al. (1952) described the roadside section at Little River Gap and noted that the Murray Shale has been cut out of the section by faulting. They (King et al., 1952, p. 15, 17, table 5) concluded that, at Little River Gap, the fossil-bearing “Murray Shale” of Keith (1895) is actually the Helenmode Formation. The same conclusion was reached by King and Ferguson (1960) and by Neuman and Nelson (1965, p. D28, D29). The classic Little River Gap roadcut (Fig. 3.1, Locality


LRG; GPS coordinates 35°43.914’N, 083°48.936’W) was examined by the present authors in 2016. Our observations are


congruent with the geologic map presented by King et al. (1952, fig. 5). The outcrop on the northeast side of the old road (on the east side of Little River) comprises an intermittently exposed stratigraphic section from the Cochran Formation to the Nebo Quartzite. The Hesse Quartzite is perhaps also exposed at the east end of the outcrop, but interpretation of the stratigraphy is complicated by a fault and by soil cover. The Nebo Quartzite contains several shale intervals, each about 20− 30cm thick, that resemble the lithology of the Murray Shale, but the Murray Shale itself appears to be absent from the roadcut. Trace fossils occur in thin-bedded shale-siltstone and fine sandstone beds of the Nebo Member, but no body fossils were observed. Given that all other occurrences of Buenellus chilhoweensis n. sp. and Isoxys chilhoweanus are in the Murray Shale (herein; Walcott, 1890), we conclude that the fossils assigned to USNM Locality 17 were sourced from the Murray Shale at a site on Chilhowee Mountain close to (but not at) the roadside exposure on the east side of Little River Gap.


New Localities on Chilhowee Mountain.—Several fossil- bearing exposures in the Chilhowee Group were discovered by


457


SJH on Chilhowee Mountain to the northeast of the classic Little River Gap roadcut. This series of exposures is on privately owned land, maintained as the Three Sisters Conservation Area (managed by Blackberry Farm). We stress that access to the localities requires expressed permission from the landowners: the locality information presented here is published with their approval. The exposures are in the banks of an unmarked jeep trail that winds through several switchbacks to reach the summit ridgeline of Chilhowee Mountain (Fig. 3.1). The trail crosses over much of the Chilhowee Group stratigraphy, from the Cochran Formation (at the foot of the trail) to the Hesse Quart- zite (forming the summit ridgeline). The stratigraphically lowest exposure of interest is in the


Nichols Shale (Fig. 3.1, Locality CM1; GPS coordinates 35° 44.649’N, 083°48.892’W). Several person-hours of collecting and splitting of ~100 kg of bulk samples from the shale to silt- stone and fine-grained sandstone at this site yielded several trace fossils. The absence of macroscopic body fossils despite the suitable lithology for their preservation is consistent with assignment of the Nichols Shale to a pre-trilobite age (Begadean Series), in accord with previous studies (Hageman and Miller, 2016). This provisional age assignment could be tested with further collecting effort within this stratigraphic unit, particu- larly if acritarchs could be extracted. Further up the mountainside lie exposures of the ridge- and


cliff-forming Nebo Quartzite. Cross-bedding and Skolithos burrowing were observed within that unit, but no serious effort to look for body fossils was made due to the discouraging lithofacies. Higher still, several meters of shale within the low- ermost part of the Murray Shale are exposed in close juxtapo- sition to the top ledge of the Nebo Quartzite (Fig. 3.1, Locality CM2; GPS coordinates 35°44.817’N, 083°48.446’W). That shale yielded bradoriids, indeterminate carbonaceous filaments, and abundant trace fossils. The bradoriid specimens have yet to be identified, but their stratigraphic position within the lower few meters of the Murray Shale is consistent with the occurrence of Indotes tennesseensis at Murray Gap (Laurence and Palmer, 1963; Wood and Clendening, 1982). Seven specimens of Buenellus chilhoweensis n. sp. and


abundant hyoliths were recovered from an ~0.5m thick interval within the upper portion of the Murray Shale at an exposure located further east and up the hillside (Fig. 3.1, Locality CM3; GPS coordinates 35°45.076’N, 083°48.030’W). Cliffs of the cross-bedded, Skolithos-bearing Hesse Quartzite form the rid- geline summit above this locality. The exact stratigraphic dis- tance of the trilobite-bearing interval below the base of the Hesse Quartzite cannot be measured due to soil cover, but hill- side topography suggests that the distance is on the order of 10− 20 m. The lithology of the trilobite-bearing interval is a friable shale and siltstone that weathers into chips.


Murray Gap Area


Original locality of Walcott and Keith.—In his description of Isoxys chilhoweanus, Walcott (1890, p. 626) reported that some of the fossils were sourced from “near Montvale Springs” on Chilhowee Mountain. Keith (1895, p. 3) also noted “the crest of the mountain above Montvale Springs” as a source for fossils from the Murray Shale. This indicates that the fossils were


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220