search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
374


Journal of Paleontology 92(3):373–387


early apical ontogeny) allows for testing of phylogenetic hypotheses on a limited geographic scale, broader phylogenetic analysis—and reliable assignment to supraspecific taxa—based solely on shell characters remains problematic (Allmon, 1996, 2011; Beu, 2010, p. 89). In this paper, we report four species assignable to the genus


Turritella sensu lato, from the Late Jurassic (Oxfordian) Chari Formation of Kutch, western India, and argue that these represent the oldest turritellid species known. The age of the Turritella- bearing horizons is well constrained by the coeval ammonites and belemnites. Two of these species of Turritella were previously described from these deposits (Mitra and Ghosh, 1979). Unfor- tunately, however, they went unnoticed by the paleontological community, and the specimens were lost. We therefore here re-describe them, based on new data obtained from numerous additional specimens and SEM analysis, and describe two more species as new. We compare the Indian species with diverse species acrossmany geological periods and continents to showthe extent of homeomorphism, but we explicitly note that nothing phylogenetic is intended by these comparisons.


Turritellidae versus Mathildoidea


Within gastropods, mathildoids are phylogenetically distant from turritellids. They are sometimes referred to as “lower hetero- gastropods,” more closely related to pulmonates and opistho- branchs than to cerithioids.Yet the shells ofmanymathildoids are superficially similar to turritellids in being high-spired, with rela- tively small apertures. The group was also apparently more diverse in the Mesozoic, especially the Jurassic, than it is today (see Bandel, 1995; Bieler, 1995; Gründel and Nützel, 2013), posing an additional potential difficulty in distinguishing its spe- cies from early representatives of Turritellidae. The family Turritellidae is characterized by an elongate,


high-spired shell of many whorls, ending in an aperture that is relatively small, simple, and entire, lacking any elaboration of its margin (Marwick, 1957). The subfamily Turritellinae is characterized by external teleoconch sculpture of spiral threads, sometimes beaded, and curved growth lines; the aperture is rounded or quadrate and not large; the inner wall of the aperture is smooth and concave (Marwick, 1957; Bandel, 2006). Mathildoid species superficially resemble turritellids in shell shape and spiral ornamentation, but the former are usually


more slender (Bandel, 1995). Many species of mathildoids have strong carination similar to one of the species discussed here. Strong carination is also found in turritellids, such as Zaria angulata (Sowerby, 1840) from the Miocene of the Indian sub-continent (see Harzhauser et al., 2009, fig. 3a–d), and “Turritella” mortoni from the Paleocene of the U.S. Gulf and Atlantic coastal plains (Allmon, 1994, 1996). Shells of mathildoids, however, show a number of clear dif-


identification of them as turritellids is therefore based on other characters. For example, all our studied specimens lack axial sculpture and an apertural anterior canal, and all of our four species are relatively large (> 2 cm) compared to known Jur- assic mathildoids. A broader analysis of shell characters of our Jurassic species, compared to a number of Cretaceous turri- tellines and Mesozoic mathildioid species originally identified as Turritella (Tables 1–3), further supports our assignment by demonstrating that our species are more similar to Cretaceous turritellids than to Mesozoic mathildoids. Growth-line data are poorly known from fossil mathildoids, but extant species show mostly irregular and opysthocyrt growth lines (Bieler, 1995). The species considered here, however, have prosocline growth lines. Ecologically, the modern family Mathildidae is a mostly deep-water group (Bieler, 1995), with many Recent species inhabiting 550–600m depths within coral bank com- munities (Smriglio et al., 2007). The depositional environment of the Dhosa Oolite Member, from which the present species were obtained, in contrast, was an offshore setting below the fair-weather wave base (Singh, 1989; Fürsich et al., 1992), and no corals have been described from the Dhosa Oolite Member.


Geologic setting


Geologic time units.—During the Middle Jurassic (Bajocian– Bathonian), the Kutch Basin developed due to the fragmentation of Gondwana (Biswas, 1982, 1991). Mesozoic strata in Kutch


Table 1. Coded morphology of turritelline species described in this text (A–D), Cretaceous turritellines (E–I) and some mathildidoid species (J–N). The coded characters and their different states are given in Appendix 1.


Species Name


A Turritella jadavpuriensis B Turritella jhuraensis C Turritella amitava n. sp. D Turritella dhosaensis n. sp.


F J


Strat. Range Oxfordian


E Turritella encina Squires and Saul, 2006 (Squires and Saul, 2006)


Turritella iota Popenoe, 1937 (Squires and Saul, 2006) G Turritella hearni Merriam, 1941 (Squires and Saul, 2006) H Turritella petersoni Merriam, 1941 (Squires and Saul, 2006) I


N Mathilda cf. euglypha Laube (Hudleston, 1892)


K Promathilda decorta (Bandel, 1995) L Tofanella decussata (Bandel, 1995) M Cristalloella cassiana (Bandel, 1995)


Oxfordian Oxfordian Oxfordian Santonian


late Turonian Turonian


Turritella xylina Squires and Saul, 2006 (Squires and Saul, 2006) Cenomanian Mathilda bolina (Bandel, 1995)


Late Triassic Late Triassic Late Triassic Late Triassic Early Jurassic


1 2 345678 91011 0 3 112210 1 0 1


1 0-3 112120 1 0 1 1 1-4 121110 ? 0 1 1 5 ? 2 ? 1 2 0 1 0 1 1 0 ? 1 ? ? 1 0 ? 0 1


1 4 ? 1 ? ? 2 0 ? 0 1 1 1 ? 0 ? ? 2 0 ? 0 1


Cenomanian to early Turonian 1 0 ? 1 ? ? ? 0 ? 0 1 1 0 ? 1 ? ? 1 ? ? 0 1 2 3 ? 2 ? 1 1 1 1 1 0 2 3 112121 1 1 0 2 3 012211 1 1 0 2 3 002121 0 1 0 2 3 1 ? ? 0 1 1 ? 1 0


ferences compared to turritellids, most conspicuously their hetero- strophic (sinistral) protoconch, which shows an abrupt boundary with the dextral teleoconch. High-spired mathildoids are also smaller than most turritellids; their aperture frequently bears a short anterior canal; and their earliest teleoconch whorls almost always bear axial (vertical) ribs in addition to spiral sculpture. None of our specimens has preserved protoconchs; our


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220