search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Vachard et al.—Eifelian–Givetian foraminifers of the Carnic Alps (Austria)


Depositional environment.—Kreutzer (1992a, b) interpreted the Feldkogel Limestone as intertidal deposits. Pohler et al. (2015) described the Polinik Formation (including the Feldkogel Limestone) as cyclic, shallow marine (inter- to supratidal) deposits of a sheltered lagoon (see also Bandel, 1972). The microfacies encountered in this study have been


described by numerous authors (Wilson, 1975; Préat and Mamet, 1989; Vachard, 1993; Préat and Kasimi, 1995; Flügel, 2004; Mamet and Préat, 2005, 2007, 2009; Préat et al., 2007; Vachard et al., 2010; Mörtl, 2014; Kröck, 2016). They are classically interpreted as follows, from deep lagoonal to intertidal and supratidal: (1) Amphipora floatstone to rudstone formed in a low-energy, restricted subtidal environment of an inner platform or lagoon (Machel and Hunter, 1994; Da Silva and Boulvain, 2004); (2) grainstone to packstone with parathuramminids, issinellids, and earlandiids are interpreted as deposits of a high-energy intertidal environment; laminated grain- and packstone are typical intertidal lithologies and may also occur in the shallow subtidal (Pratt, 2010); (3) ostracode wackestone-packstone indicates a low-energy restricted inter- tidal lagoonal environment; (4) bindstone (stromatolite) formed in an upper intertidal to supratidal environment (e.g., Shinn, 1983; Pratt, 2010); and (5) intraclast breccia represents tidal channel deposits, which are common in the intertidal environ- ment (Shinn, 1983; Pratt, 2010). The described lithofacies of the Feldkogel Limestone at


Mount Polinik are locally arranged to form shallowing-upward cycles, starting with subtidal Amphipora limestone, overlain by intertidal wackestone, grainstone and packstone with locally intercalated intraclast breccia and finally by shallow intertidal to supratidal stromatolite. Amphipora grew upright on the bottom in a subtidal


lagoonal environment, attached to the carbonate mud, and toppled in situ after death. Their ecology was well explained by Mörtl (2014). Amphipora floatstone is a typical lithology in the backreef (lagoonal) facies of many Upper Devonian reefal environments, representing relatively shallow- and quiet-water conditions (Machel and Hunter, 1994). The paleocology of the parathuramminids, issinellids, and earlandiids is more difficult to reconstruct (see below). Parathuramminid, issinellid, and earlandiid ecologies.—


As the Devonian foraminifers of the class Fususulinata have no modern representatives, it is preferable to reconstruct the paleoecology of the Devonian foraminifers using the method of the morphogroup rather than that of comparative autoecol- ogy. The term morphogroup refers to broad groupings of similar shapes or growth patterns of foraminifers that are independent on the exact taxonomy and of the possible homeomorphs. Morphogroups offer a way of overcoming taxonomic differ- ences and thereby making comparisons between assemblages of different geological ages (Murray et al., 2011); consequently, they have been generally used to reconstruct fossil paleoenvir- onments (Chamney, 1976; Jones and Charnock, 1985; Murray, 1991; Nagy, 1992; Kaminski et al., 1995; Nagy et al., 1995; Jones, 1999; Preece et al., 1999; Van Den Akker et al., 2000; Mancin, 2001; Jones et al., 2005; Kender et al., 2008a, b; Cetean et al., 2011). Within the morphogroups, it is also interesting to try to reconstruct the microhabitats of the different components of the morphogroups. As indicated by Sen Gupta (2002, p. 163),


365


“a ‘microhabitat’ is a microenvironment characterized by a combination of physical, chemical and biological conditions (oxygen, food, toxic substances, biological interactions, etc.).” Several authors have suggested a close relationship between microhabitat and test morphology (Sen Gupta, 2002, with references therein). Because the foraminiferal test morphology is directly controlled by morphofunctional factors such as nutrient strategy and life position (Tyszka, 1994; Coccioni et al., 1995; Reolid et al., 2008), it is easy to admit that the same morphogroups have been present since the Devonian into the Holocene (Coccioni et al., 1995, with references therein). Consequently, in our material, the morphogroups A and C of Charnock and Jones (1985); and their equivalents A-1 and A-2 of Coccioni et al. (1995), ED1, ED2, and ED4 of Holcová and Slavík (2013), A and B1 of Murray et al. (2011), are represented. Morphogroup A is constituted by the earlandiids, which are tubular, epifaunal suspension-feeders. Morphogroup C is represented by the caligellids, which are elongate forms, infaunal herbivores, or detritivores. The pseudoammodiscids (i.e., primitive archaediscates) and saccamminids were not encountered in our material, and it is noteworthy that all representatives of morphogroup B are absent. Similarly, the epiphytic foraminfers of morphogroup D are totally absent from the Mount Polinik microfacies. Due to their shape, calcisphaeroids and parathuramminids


have often been interpreted as elements of phytoplankton or zooplankton (Munnecke and Servais, 2008; Mörtl, 2014), and do not belong to benthic foraminifer morphogroups. Never- theless, these microorganisms appear related, if not restricted, to confined enviroments: lagoon and/or microbialitic and even stromatolitic build-ups. They appear more as resistance cysts than as planktonic tests or skeletons. The arguments to justify the assignment to plankton given by Munnecke and Servais (2008) were: (1) abundance; (2) occcurences in different facies; and (3) spherical shape. Finally, the saccamminid and parathuramminid foraminifers, which are possibly detrital/ bacterial scavengers, might be partially transported in suspen- sion. Given such hypotheses, it is no wonder that calcispheroids and parathuramminids were confused with calcified radiolarians by Vizhnevskaya and Sedaeva (2002a, 2002b) and Afanasieva and Amon (2011). The other taxon to discuss is Vasicekia? sp. This taxon can


also correspond to Palachemonella (Flügel and Hötzl, 1971, pl. 2, figs. 8–10). It belongs to the incertae sedis Moravammi- nida and Issinellina (Vachard and Cózar, 2010). Vasicekia Pokorny, 1951 was erroneously assigned to the Nanicellidae by Poyarkov (1979), who included all the Moravamminidae in the superfamily Hippocrepinoidea, which encompassed: Hippocrepinidae (Astrorhizata), Moravamminidae (incertae sedis in our opinion; see Vachard and Cózar, 2010), Earlandiidae, and Caligellidae (also linked together in this paper). Another Moravammina confused with a Nanicella was recently published by Préat et al. (2007). This misinterpretation explains how the Moravammina, which is so frequent in the type Givetian, were almost never mentioned by Préat or Mamet in their works about this stage: these authors confused the first coiled part of Moravammina with Nanicella, and the uncoiled last parts of Moravammina with Triangulinella or Kamaena.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220