search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 92(3), 2018, p. 388–397 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.138


Ecophenotypic variability during times of evolutionary stasis in Middle Devonian Actinopteria (Bivalvia, Pterioidea) from New York


Judith Nagel-Myers,1 Christopher A. McRoberts,2 and Cullen W. LaPointe3


1Geology Department, St. Lawrence University, Canton, New York 13617, USA ⟨jnagel@stlawu.edu⟩ 2Geology Department, State University of New York Cortland, Cortland, New York 13045, USA ⟨christopher.mcroberts@cortland.edu⟩ 3Department of Geology, University of Georgia, Athens, Georgia 30602, USA ⟨cullen.lapointe25@uga.edu


Abstract.—We examine the morphological variation of a Paleozoic pterineid during a time of relative ecological and taxonomic stability in the Middle Devonian Appalachian Basin in central and eastern New York. We discuss the taxonomic status of the Middle Devonian bivalve Actinopteria boydi (Conrad, 1842) and quantify the variability of its shell disk as well as the width and angle of the auricles and sulci of this otherwise character-poor bivalve species using geometric morphometric techniques employing Cartesian landmarks. We compare variants from three strati- graphic levels (Skaneateles, Ludlowville, and Moscow formations) and from different habitats characterized by lithofacies. The phenotypic variation observed in our data does not amount to an overall directional shift in morphology, i.e.,


they constitute reversible changes of morphology in a single variable taxon. Our study finds small-scale variation in morphology that represents evidence for ecophenotypic variation through ~3–4 Myr. Differences in substrate coupled with water energy seem to impact this taxon’s morphology. Although no clearly separated groups can be observed, material from muddy facies develops variants with, on average, rounder and broader shell disks than are found in material from silty facies. This morphology could have increased the flow rate of water channeled over the posterior shell portion thereby improving filtration rate, which is especially beneficial in environments with low water energy.


Introduction


The pterineid bivalve Actinopteria boydi (Conrad, 1842) is an important constituent of the Middle Devonian shallow-water epibenthos of the Hamilton fauna of New York (Fig. 1; Grasso and Wolfe, 1977; Linsley, 1994; Brett et al., 2007a). These cosmopolitan suspension feeders are, like all pterineids, known for their phenotypic flexibility (Tëmkin, 2006; Wada and Temkin, 2008), and their abundant occurrence in the Middle Devonian of central and eastern New York provides an excellent opportunity to examine morphological variability in units characterized by overall long-term stability. Brett and Baird (1995) recognized extended intervals of


concurrent faunal persistence (coordinated stasis) in the Hamilton fauna that are terminated by environmentally induced turnover events (e.g., Brett et al., 2007a; Brett, 2012). Coordinated stasis is characterized by patterns of taxonomic stability within and among temporally separated paleocommunities (for a review, see Brett, 2012). Althoughmore controversial (Ivany, 1996; Patzkowsky and Holland, 1997; Olszewski and Patzkowsky, 2001), studies have also documented ecological stability within particular biofacies of the Hamilton fauna (Brett et al., 2009; Ivany et al., 2009). At the level of species and populations, individual lineages


identified within the Hamilton fauna have yielded important case studies for punctuated equilibrium (e.g., Eldredge, 1974;


A previous error in this article has been corrected. See doi: 10.1017/jpa.2018.24


Pandolfi and Burke, 1989; Lieberman et al., 1995). Periods of small scale morphological fluctuations have been described separating times of rapid speciation (e.g., Eldredge and Gould, 1972; Gould and Eldredge, 1977; Eldredge et al., 2005). The processes behind this stability remain controversial (e.g., Hansen and Houle, 2004; Eldredge et al., 2005; Estes and Arnold, 2007; Futuyma, 2010), but the phenotypic variability of taxa during these intervals has attracted attention as an indicator of the capacity of species to respond to changes in their envir- onment (e.g., Dietl, 2013) and its role in diversification and speciation (e.g., Pfennig et al., 2010). Geometric morphometric techniques employing Cartesian


landmarks have improved the fidelity of quantifying complex morphologies providing for a more robust method of examining patterns of multivariate variation in shape through time (Roth and Mercer, 2000; Webster and Sheets, 2010; Cruz et al., 2012). Using these techniques, we study the phenotypic variation of Actinopteria boydi in the stratigraphic and paleoecological context of the Middle Devonian Hamilton fauna. Only a few recent studies have focused on Devonian pter-


ineids (McAlester, 1962a, 1962b, 1963; Bailey, 1983; Johnston, 1993; Rode, 2004). Antiquated typological species concepts defining many of these species lack diagnostic criteria and often fail to recognize potential morphological variation within natural populations. Departing from Newell and LaRocque’s (1969) classification, we consider Actinopteria Hall, 1884 to be a distinct genus (separate from Ptychopteria Hall, 1883) and the


388


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220