This page contains a Flash digital edition of a book.
technology  GaN transistors


European efforts propel nitride devices to a new level


The first GaN HEMTs grown on free-standing diamond, GaN pressure sensors with various designs, robust chemical sensors and power amplifiers delivering hundreds of watts are some of the many highlights of the European project entitled MORGaN. The programme’s leader, Sylvain Delage from III-V Lab, details the many accomplishments.


A Ga0.75


tried and tested route for improving device performance involves the introduction of


N/GaN cousin, enabling devices with higher frequency capabilities. And on top of this, it is possible to wring out further improvements by switching to diamond substrates, a step that aids thermal management of the device.


new, superior material combinations. This can pay dividends with nitride electronics, which are traditionally based on the pairing of GaN and AlGaN. The introduction of InAlN in place of AlGaN reduces stress, leading to enhanced output powers and superior high temperature capability. What’s more, thanks to far stronger spontaneous polarization, the InAlN/GaN heterojunction produces twice the charge density of its Al0.25


Another goal of the MORGAN project is to exploit the thermal and physicochemical robustness of diamond. The former target has involved the development of new silicon/polydiamond composite substrates, along with the deposition of a nanocrystalline diamond coating on top of the wafer to enhance heat removal. Diamond coatings can also protect GaN, which is a major asset when this wide bandgap material is used to make sensors operating in aggressive electrochemical solutions.


Advances such as these have just been realized in a three-year project entitled Materials for Robust GaN (MORGaN). This effort, which kicked-off in November 2008 and was backed by €9.2 million (about $13 million) of funding from the European Commission, involves 23 industrial and academic partners from 11 nations (see Figure 1 for details).


The great promise of the GaN/InAlN heterostructure came to light in a forerunner of MORGaN, a project known as UltraGaN, which started in 2005. Thanks to the success of both these projects, the InAlN/GaN heterostructure is now under close investigation by major research laboratories worldwide for its specific advantages in optoelectronic and microelectronic applications.


Figure 1.The European Commission funded project MORGaN – Materials for Robust GaN – involved 23 industrial and academic partners from 11 nations


April / May 2012 www.compoundsemiconductor.net 45


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175