This page contains a Flash digital edition of a book.
Telecoms ♦ news digest


Record breaking output power achieved in GaN Ku-


band PA Mitsubishi Electric’s latest gallium nitride power amplifier is expected to contribute to smaller and lighter transmitters for terrestrial stations used in satellite communications. What’s more its output power is quadruple that of the firm’s gallium arsenide amplifier and is a sixth of the size


Mitsubishi Electric has developed a prototype GaN HEMT amplifier, with it says, is currently the world-leading in Ku-band (14GHz) satellite communications, achieving 100W output power.


Comparison of new and previous amplifier characteristics Mitsubishi Electric began to ship samples of C-band 100W GaN HEMT power amplifiers for satellite communications in 2011.


Sofradir develops next generation 10-micron pitch IR detector


The detector uses mercury cadmium telluride (MCT/HgCdTe), a cooled IR technology for use in military and defence applications


The image quality of an infrared detector depends on its spatial resolution, which is related to the size and number of pixels. The higher the number of pixels and the smaller the pixel size, the sharper the image.


100W Ku-band GaN amplifier


The high-output GaN HEMT amplifier features a downsized configuration and a low-loss circuit. Output power is double that of the company’s existing GaN HEMT amplifier and quadruple that of Mitsubishi Electric’s GaAs amplifier. The new amplifier’s ability to perform the tasks of four conventional units represents an important contribution to downsize transmitters to one sixth the size of a GaAs amplifier.


Sofradir is now using a compact 10-micron pixel pitch in its latest MWIR detector, which is suited for use in military, defence and space applications. The French firm says the small pitch in its prototype detector, means that the number of pixels on a standard size chip can be doubled.


With this significant increase in image resolution, fighter pilots and soldiers will be considerably more effective in distinguishing between small objects at long distances (up to ten km) during the day and night, and through fog and smoke.


Targeted military applications of Sofradir’s 10-micron pixel pitch IR detector will include Infrared Search and Track Systems (IRST), targeting and reconnaissance pods, long-range surveillance and armoured vehicles.


“It is critical for the military to see first and see the right target, whatever the weather conditions. This is what the higher resolution, higher range 10-micron pixel pitch infrared detector helps provide,” says Philippe Bensussan, chairman and CEO at Sofradir.


Vital satellite communications require robust systems that must work under adverse conditions, such as during natural disasters. High-power output is required for radio transmission from terrestrial stations to satellites in geostationary orbit 36,000 km above sea level. Also, terrestrial stations must be small enough to be transported by vehicles and installed. GaAs amplifiers have been used commonly for satellite communication transmitters, but GaN amplifiers have recently become increasingly popular because GaN transistors can handle very high voltages.


“Sofradir continues to build on its legacy of innovation. We were the first to introduce the 15-micron pixel pitch TV format IR detector, a compact high-resolution product that brought system integrators significant advantages in performance and footprint and has become an industry standard. We’re taking the lead once again by pushing the bar from 12-micron pixel pitch that exists today to 10-micron. Our customers can look forward to the ultimate performance in IR systems.”


The focal plane array prototype was developed with the support of DGA (Direction Générale de l’Armement) by CEA-Leti at DEFIR, the joint laboratory of Sofradir and CEA-Leti. CEA-


April/May 2012 www.compoundsemiconductor.net 103


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175