This page contains a Flash digital edition of a book.
technology  LEDs


L


ED light bulbs have many great attributes. Their efficiency trounces that of the incumbent source, the incandescent bulb, and unlike their energy- efficient rival, the compact fluorescent, they are not ridden with mercury and reach full brightness in an instant. However, sales are poor, because retail prices are very high – on average an LED bulb sells for $28, according to the UK-based market analyst IMS Research.


To slash LED bulb prices, manufacturers must trim every major contribution to the overall cost. The packaged LED is the obvious place to start, since it accounts for almost 60 percent of the total bill of materials, according to a recent report from the US Department of Energy. If the efficiency of these chips can be increased, that will not only trim the price of the light bulb, thanks to a reduction in the number of LEDs needed to produce a given power; it will also reduce running costs, and in turn make the purchase more attractive.


White LED prices are very high, because the production process involves coating red, yellow or green phosphors on blue-emitting chips to produce white emission via colour mixing. This combination of chips and phosphors limits device efficiency, yield and reliability. But it is possible to tackle these issues by building novel, phosphor-free GaN-based dot-in-a-wire white LED. This technology promises to unlock the door to very-high-efficiency, more affordable light bulbs, according to our team at McGill University, Montreal, Canada.


Broadband emission


If solid-state lighting products are to be competitive, they must deliver high-performance in the blue, green and red spectral range. Today, blue LEDs built from GaN-based quantum wells are a relatively mature, high- performance technology, but their longer wavelength green, yellow and red cousins produce relatively low quantum efficiencies. What’s more, the device efficiency plummets at increasing current densities, a weakness that is commonly referred to as ‘efficiency droop’.


The low quantum efficiency of these green, yellow and red LEDs – and their severe efficiency droop – stems from material characteristics associated with III-nitride planar heterostructures, such as polarization fields and high densities of defects and dislocations. These traits


are behind the unique carrier dynamics found in conventional III-nitride quantum-well LEDs, and have been claimed to be the root cause for electron leakage or overflow, Auger recombination, and poor hole transport in this type of device.


In contrast, our one-dimensional nanowire heterostructure LEDs do not suffer from many of these issue, which plague their planar counterparts. They can be built with drastically reduced dislocations and polarization fields, and they can enhance light extraction efficiency, thanks to far larger surface-to-volume ratios.


Conventional wisdom indicates that the way to realise green and red emission with nitride devices is to embed the InGaN quantum wells or ternary wires in GaN nanowire structures. But this approach is flawed: Only a small proportion of injected carriers transfer to the lateral surfaces of the wire, due to relatively poor carrier confinement in the nanoscale heterostructures; and the non-radiative carrier recombination on the wire surfaces significantly degrades the quantum efficiency of the device.


Our unique InGaN/GaN dot-in-a-wire heterostructures address this critical issue. In our case, InGaN quantum dots are incorporated in defect-free GaN nanowires that provide three-dimensional carrier confinement, a pre- requisite for ultra-high-efficiency emission (see figure 1(a)). On top of this, our novel nanostructures offer unprecedented colour tunability. The size and the composition of the dots govern the emission wavelengths, and it is possible to create intrinsic white- light sources from single GaN nanowires by varying the structural properties of the dots during a single epitaxial growth process.


We have employed a scanning electron microscope to acquire images of our InGaN/GaN dot-in-a-wire arrays that are grown directly on silicon (111) substrates by radio-frequency plasma-assisted MBE (see Figure 1 b). Catalyst-free nanowires, which are vertically aligned to the substrate and exhibit excellent size uniformity, form spontaneously under nitrogen-rich conditions.


A scanning transmission electron microscope can uncover more detailed images of our devices (see Figure 1 c). This tool reveals multiple InGaN quantum dots near the wire centre, due to strain-induced self- organization. The composition of these dots can be


April / May 2012 www.compoundsemiconductor.net 33


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175