This page contains a Flash digital edition of a book.
technology  photodiodes


high-power photodiode performance). In an ideal world the electrical output of the photodiode follows its optical input in a linear fashion. But in practice this is never the case – nearly every physical mechanism has some degree of nonlinearity. This is present in optical transmission, carrier generation and transport, and compounding this issue, the non-linear mechanism that dominates varies, depending on the power level, frequency range and bias voltage of the photodiode. So to produce a diode with good performance, an engineer has to weave a well-chosen path that trades conflicting requirements for high-linearity with the need for certain levels of performance in key areas.


While addressing these issues, the photodiode designer must not neglect thermal management. Multiplying the photocurrent by the bias voltage reveals that a high- power photodiode needs to dissipate nearly 1 Watt from an active area of less than 10-4


cm2 . The junction


temperature of the diode – which is governed by factors such as heat conductance of semiconductor layers, the photodiode geometry and heat sink design – can exceed 200 °C (see Figure 4). Even higher diode temperatures are possible when the bias voltage is cranked up to improve photodiode saturation. This further increases the importance of good thermal management.


New variants


During the last decade engineers have increased the performance of the photodiode by modifying its design. Variants introduced include the uni-traveling carrier (UTC) photodiode, the partially-depleted-absorber photodiode, and the dual-depletion region photodiode.


Our group at the Department of Electrical and Computer Engineering at the University of Virginia believes that the UTC photodiode merits special attention: It delivers superb performance and has potential for further improvements. This class of photodiode features a quasi-neutral absorber and a transparent depletion region. When incident photons create electron-hole pairs in the un-depleted absorption layer, electrons behave as minority carriers and holes as majority carriers. Via a combination of diffusion and drift, electrons are transported to the depleted, high-field collection layer, where they then drift toward the n- contact at their high saturation velocity. In contrast, holes, thanks to the quasi-neutrality of the absorption layer, respond very fast – within the dielectric relaxation time that is determined by their collective motion. This means that there is a fundamental difference between a UTC photodiode and its PIN counterpart: In the former structure, electrons and holes contribute to the response current, with the low-velocity hole transport dictating the device’s speed. An additional strength of the UTC design is that it alleviates the space-charge effect, thanks to a more balanced electron and hole distribution profile. Electrons are able to maintain their high velocity at relatively low electric fields, enabling the


UTC photodiode to achieve high speed and high saturation output photocurrent, even at a low bias.


Through modifications to the UTC structure, we have taken the device to a new level of performance in certain areas, such as output power. Our modified UTC (MUTC) features several elements that contribute to the device’s outstanding performance (see Figure 5). This includes an intrinsic InGaAs layer inserted between the p-type InGaAs absorber and the InP drift layer. Additional design flexibility follows from this – the device can then be optimized for both high responsivity and high speed.


Our quasi-neutral InGaAs absorber consists of four step-graded p-type layers. Grading creates a quasi- electric field that drives electron transport in the absorber region. To increase the saturation current, we use charge compensation. To this end, we slightly dope the depletion region to pre-distort the electric field in such a way that it is initially higher where the space- charge effect is most severe at high current.


Another feature that pre-distorts the electric field is the cliff layer – a very thin layer of n-type InP sandwiched between the InGaAs absorber and the InP drift layer. The cliff layer increases the electric field in the intrinsic InGaAs absorber and speeds the passage of electrons through the InGaAs/InP hetero-junction interface.


Figure 3. Factors that limit the performance of high-power photodiodes


Figure 4 (a).The layout image and (b) thermal image of 34-µm backside- illuminated MUTC


photodiode obtained by thermal reflectance imaging


April / May 2012 www.compoundsemiconductor.net 29


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175