This page contains a Flash digital edition of a book.
technology  LEDs


yellow, orange and red emission (see Figure 3 a). And by combining dots of different colours in nanowires, we have formed high-performance, phosphor-free white LEDs on a silicon platform. These devices combine a strong white-light output with highly stable emission. This high level of performance over a wide range of operating conditions is seen in pulsed bias measurements of relative external quantum efficiency with injection current (see Figure 3b). There is no degradation in room-temperature device efficiency up to injection current densities of 2.2 kA cm-2


.


We estimate that our internal quantum efficiency is about 60 percent, using an approach that is essentially based on the well-known ‘ABC’ model (the basis of this model is that carriers in an LED undergo one of three processes: Shockley-Reed Hall recombination, a non- radiative process that is proportional to the carrier density; radiative recombination, which is proportional to the square of the carrier density; or other higher order carrier loss processes, such as Auger recombination that depends on the cube of the carrier density). Values of the internal quantum efficiency extracted from our model agree with those obtained from optical pumping and electrical injection measurements.


Our dot-based devices set a new benchmark for internal quantum efficiency for any class of LED operating in the green, red, and entire visible spectral range. What’s more, the light emission characteristics are incredibly stable over a wide current range (from 333 A cm-2 1100 A cm-2


to ) (see Figure 3 c)


Another great attribute of our novel LEDs is their absence of droop over a very wide operating range (see Figure 4). Simulations of the internal quantum efficiency, using what is essentially an ABC model, reveal that the third-order non-radiative carrier recombination coefficient is of the order of 10-34


cm6


nearly four decades smaller than the commonly reported Auger coefficients in GaN-based quantum-well LEDs.


This extremely small value should not raise any eyebrows, given the absence of efficiency droop. What’s more, it provides unambiguous evidence that Auger recombination plays a negligible role on the performance of InGaN/GaN dot-in-a-wire LEDs operating in the entire visible spectral range.


Figure 4 Relative external quantum efficiency (EQE) of a dot-in-a-wire white LED measured at different injection currents in the temperature range of 6 K to 440 K.The simulated internal quantum efficiency (IQE) (solid curve) using the ABCmodel is also shown for comparison.


Our technology fundamentally addresses some of the major bottlenecks for the growth of phosphor-free solid-state lighting, such as low quantum efficiency and efficiency droop. Though still in its infancy, this remarkable dot-in-a-wire LED technology is already showing enormous potential for applications in future lighting and full-color displays.


s-1 –


What’s more, it provides an extremely powerful, unprecedented approach for controlling the LED emission properties at the wafer level, which can significantly reduce manufacturing cost and improve device yield.


To advance the promise of these LEDs, we are now focusing on methods to transfer nanowire devices to transparent substrates, a step that will lead to high external quantum efficiency and effective thermal management. In addition, we are undertaking a detailed investigation of device reliability.


© 2012 Angel Business Communications. Permission required.


Further reading H. P. T. Nguyen et. al. Nano Lett. 12 1317 (2012) H. P. T. Nguyen et. al., IEEE Photonics Technol. Lett. 24 321 (2012) H. P. T. Nguyen et. al. Nano Lett. 11 1919 (2011) H. P. T. Nguyen et. al. Nanotechnology 22 445202 (2011) Y. L. Chang et. al. Appl. Phys. Lett. 96 013106 (2010) W. Guo et. al. Nano Lett. 10 3355 (2010)


April / May 2012 www.compoundsemiconductor.net 37


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175