Telecoms ♦ news digest
All are internally matched to 50 Ω, requiring only an external RF choke, dropping resistor, and blocking/bypass capacitors for operation. TriQuint says they are also are very rugged, meeting Class 1C HBM (up to 2 kV) electrostatic discharge (ESD) requirements.
Gain blocks are some of the most widely used active components in all types of RF and microwave systems, and they must combine excellent performance with very good cost efficiency.
TriQuint says its five new devices meet these requirements and are available in two plastic package styles. They offer a choice of gain levels that the firm says, meet almost any design need, whilst consuming minimal power. Their broad frequency range makes them well suited for many applications through 6 GHz.
The new Darlington-pair gain block RFICs are now in production. Samples, evaluation boards and software are also available.
planes.
The architecture could be scaled to 64 elements (8 x 8) or 256 elements (16 x 16) due to on-chip antenna integration and the single chip integration of multiple elements.
By developing this wafer-scale chip, UCSD has successfully demonstrated independent amplitude and phase control at 106 - 114 GHz for all 16 different antenna elements, and provides commercial availability of highly scalable (from 16 elements to 256 elements) RF-IC transmitters for W-Band and D-Band phased array applications.
The chip was designed and tested by Woorim Shin, Ozgur Inac, and Bonhyun Ku, all from the Electrical and Computer Engineering Department at UCSD under the supervision of Gabriel M. Rebeiz, and was partially sponsored by the DARPA GRATE program under the direction of Carl McCants. The work was done under a subcontract to UCSD from TowerJazz.
TowerJazz and UCSD to launch SiGe 110 GHz
transmitter Targets for the silicon-germanium based phased array transmitters include automotive, radar, aerospace and defence, passive imaging, security, and millimetre wave imaging
TowerJazz and the University of California, San Diego (UCSD) aim to demonstrate what they say is the first wafer-scale phased array with 16 different antenna elements operating in the 110 GHz frequency range.
The first success of the collaboration was achieved for the RFIC using TowerJazz’s proprietary models, kit and the millimetre wave capabilities of its 0.18 µm SiGe BiCMOS process, SBC18H3.
The SBC18H3 process targets applications for automotive radar, aerospace and defence, passive imaging, security, and millimetre wave imaging. The collaboration of the phased array chip was partly funded by DARPA.
The wafer-scale SiGe BiCMOS chip is 6.5 x 6.0 mm and combines the 110 GHz source, amplifiers, distribution network, phase shifters and high-efficiency on-chip antennas. This should allow a new generation of miniature and low-cost phased arrays for W-band (75 - 110 GHz) applications.
This advancement better serves the needs of the greater than $100 million emerging markets of auto radar and passive imaging (security). The antennas are integrated on-chip which removes the expensive transitions and distribution network between the phased array and the off-chip elements.
This wafer-scale phased array with 16 radiating elements, together with all the necessary CMOS control circuits, is capable of electronic beam scanning to +/-40 degrees in all
April/May 2012
www.compoundsemiconductor.net 109
The phased array chip was developed using TowerJazz’s SBC18H3 BiCMOS process which offers both high- performance 0.18 µm SiGe bipolar and high quality passive elements combined with high density 0.18 µm CMOS, to enable high-speed networking and millimetre wave applications.
The process offers SiGe transistors with peak Fmax of 280 GHz and peak Ft of 240 GHz, ideal for low-power, high performance millimetre wave circuits, while replacing the need for more expensive GaAs chips.
The SBC18H3 comes standard with 1.8 and 3.3 V CMOS (dual-gate), deep trench isolation, lateral and vertical PNP transistors, MIM capacitors, high performance varactors, poly- silicon as well as metal and N-well resistors, p-i-n and Schottky diodes, high-Q inductors, triple well isolation, and six layers of metal.
“This is yet another advancement in the area of phased arrays that we are proud to announce. We have a track record of successful collaboration with TowerJazz and the ability to bring this innovative design from UCSD to market depends strongly on TowerJazz’s SiGe BiCMOS process which enables lower- cost phased arrays by integrating many functions and high efficiency antennas on the same silicon chip,” says Gabriel M. Rebeiz, Professor of Electrical Engineering at UCSD, the lead professor on this chip.
“We believe the results achieved by UCSD’s phased array transmitter demonstrates the remarkable teamwork between TowerJazz, UCSD and DARPA to provide novel capabilities and technologies to both the aerospace and defence community as well as commercial markets,” adds David Howard, TowerJazz’s Executive Director and Principal Investigator for DARPA GRATE Program.
“TowerJazz enjoys the long term, very productive working relationship we have with Rebeiz, one of the top RF research professors in the world.”
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175