This page contains a Flash digital edition of a book.
news digest ♦ compound semiconductor ♦ industry news


performing LSI devices,” noted Masafumi Yokoyama, Researcher at the Takagi & Takenaka Laboratory with the University of Tokyo. “As such, we have been evaluating new materials, such as III-V compounds, with silicon in effort to create new research breakthroughs that will address device performance demands in the post-scaling era. In support of our efforts, we adopted EV Group’s megasonic wafer cleaner, the EVG301, to help us achieve superior quality wafer bonds that are void- free.”


Commenting on the announcement, Yuichi Otsuka, Representative Director of EV Group Japan K.K., said, “We are pleased for this opportunity to support the University of Tokyo’s leading-edge LSI device research. The Takagi & Takenaka Laboratory is invested in a vital research area given the limitations the semiconductor industry faces with traditional scaling using silicon alone. We have always been a significant supporter of R&D work, which EV Group was founded upon, and continue to provide enabling technologies to advance innovation.”


To continue to meet consumer demands for lower power consuming, higher performing, and higher functioning chips, the semiconductor industry is evaluating the benefits of incorporating new materials with silicon—beyond pure silicon-based wafers. This shift is paving the way for future market growth of compound semiconductors, as well as more efficient manufacturing technologies to achieve maximum end-device performance.


For example, MOCVD processes, where a thin film of II-VI or III-V material is deposited by heteroepitaxial growth, can result in inconsistent wafer formation. This comprises the integrity of the wafer surface and ultimately impacts end-device performance. Wafer bonding is a promising solution to overcoming this problem. Essential to the wafer bonding integrity is the need for a particle-free bonding surface. Wafer cleaning is therefore critical to ensuring the wafer surface is free of any voids created by particles that can negatively impact the quality of the wafer bond and the overall wafer uniformity.


The University of Tokyo was established in 1877 as the first national university in Japan and is a leading research university.


54 www.compoundsemiconductor.net October 2010


EV Group (EVG) is a provider of wafer- processing solutions for semiconductor, MEMS and nanotechnology applications. Key products include wafer bonding, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coaters, cleaners and inspection systems.


EVG also holds a leading position in NIL and lithography for advanced packaging and MEMS. Along these lines, the company co-founded the EMC-3D consortium in 2006 to create and help drive implementation of a cost-effective through- silicon via (TSV) process for major ICs and MEMS/sensors. Other target semiconductor- related markets include silicon-on-insulator (SOI), compound semiconductor and silicon-based power- device solutions.


Solyndra 1MW PV System Powers Frito-Lay Modesto Facility


Solyndra says the 247,000 square feet installation which was completed in 8 weeks will be its largest in the United States. At peak production, the plant’s electricity will be reduced from outside sources by 25% and CO2 emissions will be reduced by 1,000 metric tons per year.


PepsiCo’s Frito-Lay North America Modesto California based manufacturing facility is installing an innovative cylindrical solar photovoltaic (PV) system on its rooftop.


The one megawatt system is the largest Solyndra installation in the United States.


“Frito-Lay is utilizing innovative technologies and renewable energy such as solar power to help minimize our impact on the environment,” said Thomas Melead, technical manager, Frito-Lay Modesto. “The Solyndra PV system allows us to maximize one of California’s greatest natural assets – the sun – to take some of the plant off of the electrical grid.”


The project consists of approximately 5600 panels, covering 247,000 square feet, and was completed in 8 weeks. The system has an installed capacity of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133
Produced with Yudu - www.yudu.com