search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
3D Metal Printing vs. Traditional Manufacturing: Shaving Off Months of Work Manufacturing the internal design of the hydrogen-oxygen injector was a critical aspect of the project. To make the complex parts, Stratasys Direct Manufacturing worked to combine features and incorporate complexity, transforming the 150+ individual pieces unit into a two-part, 3D-printed unit that eliminated extensive touch labor. They loaded the 3D CAD model, and the printer built each part by layering metal powder and laser fusing it together using the DMLS process. DMLS let the complicated, unique swirl pattern be built directly into the inlet of the injector in one singular print. The build process, as well as Stratasys Direct Manufactur- ing’s ability to combine features and incorporate complexity for more efficiency, increased the speed in development. This process is in stark contrast to the three basic conven- tional methods used to create the flow pattern within injector inlets. Traditional methods require holes drilled into each element of the inlet. A fitting would be machined with unique flow features and then welded to the first element. Using this method, multiple pieces would need to be welded, machined, cast and otherwise bonded to create the injector. With this process, the injector was a less complex part (compared with a part built using DMLS) manufactured through casting and other machined units. The process proved that 3D metal printing could be ac- complished in 10 days compared with 6 to 9 months using traditional manufacturing.


A Driving Factor: Complex or Simple Parts The current benefits of DMLS don’t necessarily equate to


revamping the entire production line. A simple part without these complex interior features would be well-suited for tra- ditional manufacturing. Where metal AM excels is with chal- lenging units. This is where it positively impacts product cost, time and labor, by reducing these elements and resulting in more efficient production development and parts.


Material Capabilities Compared to Cast Parts In addition, Marshall engineers conducted materials research to determine the success of DMLS metal units when subject to stressful environments. Titanium, Inconel, stainless steel, cobalt chrome and aluminum are all metals that can be built up, layer by layer, using DMLS technology. These are the same materi- als used by the aerospace and medical industries but their true


viability in 3D printing is being tested. Aerospace players like NASA, GE Aviation and Space-X are just starting to discover the capabilities and limits. Stratasys Direct Manufacturing confirmed DMLS parts will exhibit stronger mechanical properties than cast parts. “When you’re evaluating a part cut from a solid chunk of met- al to a cast part, the cast part will always have less strength,” said Conner. “But DMLS parts are typically only 5–10% less strong than cut metal, which means DMLS is consistently stronger than cast parts.”


Consistency and Repeatability of Metal Additive Manufacturing Controlling repeatability falls into the hands of the 3D printing


service provider. This factor was at the forefront of the project, ensuring one completed part to the next compared to conven- tional manufacturing. “Before attempting the injector, we built half a dozen different parts to show the interior complexities and allow for extensive mechanical property testing,” he said. The results helped to both accelerate development for the injector and provide insight to Stratasys Direct Manufacturing on optimal designs and materials for similar applications.


Hot Firing Test the DMLS Injector Fuel Nozzles The DMLS injectors underwent hot fire testing and contin- ue to undergo evaluations as the Marshall teams expand into the AM territory. In other areas of the Space Launch Systems program, Marshall recently unveiled the largest, most power- ful solid rocket booster ever built for NASA. It underwent a two-minute static test on March 11, 2015. The SLS program continuously breaks ground on incredible milestones for rockets, science and the future of space exploration.


Future Implications Beyond aerospace, the project has been very encouraging with excitement over what the success of this project might mean across a range of industries.


“The work with Marshall Space Flight Center benefits re-


search into DMLS manufacturing in its entirety, not just in terms of aerospace capabilities,” Conner said. “We learned a lot from the project in terms of how much farther we could push our DMLS technology to succeed in greater areas.”


This article was edited by Advanced Manufacturing Media using information provided by Stratasys Direct Manufacturing.


117 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256