search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
ADVANCED MANUFACTURING NOW Scott Knoy


A New Look at Gearmaking for Powertrain a A


s manufacturers have witnessed over the last decade, gear Scudding for powertrain applications has taken the industry by storm. The rapid pace of technical development and the number of companies implementing this method since it was introduced in 2007 increases daily. While development of Scudding is continu- ing at a rapid rate in the gear cutting community, we see that every machine manufacturer with rotating spindles on- board is attempting to capitalize on this process. However, without specialized knowledge of gear processing, they are destined to fail.


Just as companies are moving in and out of this space


quickly, the technical advancements are moving even faster. As gearmakers accepted the fact that Scudding could produce gears 5–10 times faster than gear shaping and that Scudding is a good alternative to hobbing and broaching in many applications, we see the direction beginning to move toward the hard fi nishing of gears as a result of the latest iteration in this technology, Hard Scudding. Last year, the concept of Hard Scudding appeared in the market and it immediately took root. Extensive testing has concluded that it is possible to cut a gear in the soft condi- tion via Scudding, heat treat the gear and then recut the same gear in the hardened condition via Hard Scudding, often times on the same machine. This is possible on all gear types including spur, helical, internal, external, splines, sprockets, etc. For example, this Hard Scudding process makes it possible to fi nish cut a hardened standard automo- tive ring gear in approximately 25–35 seconds and, when adding part orientation and loading/unloading time, the result is a total cycle time of approximately 40–50 seconds. This type of productivity was virtually unknown in internal ring gear fi nishing previously. In production, this process, using a solid carbide cutting tool, removes 60–100 μm per fl ank on each tooth, which makes it optimal for carburized or through-hardened parts, while nitrided parts usually do not have suffi cient case depth to benefi t from utilizing the Hard Scudding technology.


10 AdvancedManufacturing.org | September 2016


Further investigations on this application are ongoing. As testing continues to show promising results,


the interest of part manufacturers and designers has increased substantially. In soft “dry” machining, the Scudding process normally achieves a quality level of DIN 5–6, distortion from the heat treat process can greatly decrease the overall gear quality. Realizing this fact, our engineers have determined that Scudding can be applied in a dry cutting hard process and the results have been better than anticipated. Using Hard Scudding, manufacturers are able to restore the gear to a minimum DIN 5 quality level and provide fl ank surface roughness of 1.5 Ra


laboratory conditions, gears have been produced at a quality of DIN 2.


Scudding, a dry cutting process, further eliminates cost, as no


expensive fi ltration units, coolants or post-washing operations are needed.


Historically, hard machining is costly and, in the case of automotive ring gears, it is very costly, in terms of hard costs and low productivity. Scudding, since it has the advantage of being a dry cutting process, further eliminates cost, as no ex- pensive fi ltration units, coolants or post-washing operations are needed. These hard cost savings make Hard Scudding a very attractive and cost-effective fi nishing method for gear manufacturers globally. Manufacturers have quickly recognized that the low cost per piece associated with the Scudding process can be directly applied to the Hard Scudding process, as well. History has shown us that higher quality hard- finished parts will lead to a more compact automotive transmission design with higher power densities, increased cost efficiencies, less material cost and quieter units being produced.


Vice President


German Machine Tools of America (GMTA) Ann Arbor, MI


www.gmtamerica.com MODERN MANUFACTURING PROCESSES, SOLUTIONS & STRATEGIES


or less. In certain cases, under


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256