search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
machines & automation


t Employing super-sharp solid-carbide and high-speed- steel tools,


t High-speed five- and six-axis machining, t Five-axis waterjet machining, t Advanced toolpath development.


One company focused entirely on making aerospace parts and structures from composites is Royal Engineered Composites Inc. (Minden, NE). About 60% of its business is in commercial aircraft and 40% in defense. The majority of its parts are made from black carbon epoxy, including multiple variations in epoxy formulations, weaves and carbon fiber bundles. The company’s second largest work material category is fiberglass epoxy com- posites, and it also machines ballistic Kevlar composites. “We’ve focused on carbon epoxy parts for the past 12 years because we looked at those as being higher volume and value-added,” said Joel Macklin, program manager for Royal. “More fiberglass composite work was being out- sourced, so we made a concerted effort to take on carbon epoxy parts that are part of higher level assemblies.” Macklin noted that while the fibers themselves have


remained largely the same, resin systems continue to evolve, with more frequent use of highly toughened resins that tend to generate more heat during machining.


Diamond is Composite’s Best Friend


When it comes to machining carbon epoxy parts, dia- mond is the tool of choice—whether it’s solid or in the form of a coating. Diamond tools can handle the highly abrasive na- ture of most composites and prevent delamination and other machining problems that occur with conventional tools.


“The other benefit from diamond coating that a lot of peo- ple lose track of is heat transfer,” said Tim O’Dey, engineering manager for Royal. “Diamond is the best thermal conductor known to man, so you get the heat out of a cutting zone and up into the tool shank really fast. And with composites, you don’t want heat in the cutting zone.” Mike MacArthur, vice president of engineering for tool- maker RobbJack Corp. (Lincoln, CA) agreed that diamond is the tool of choice in machining aerospace composites. “Among the high-end companies—the guys making all the latest and greatest and newest types of equipment—95% of them are using solid PCD or diamond-coated carbide tools,” he said. “However, there are still lots of shops that use uncoated and DLC coated (diamond-like carbon) solid- carbide tools.”


Diamond tools are among the most expensive cutting tools on the market, but with extremely high-value aerospace parts, that cost is easy to justify. And, as composites make further inroads in aerospace, applications are growing. “There’s a specific CVD diamond router that many of the Tier 1, 2 and 3 aerospace suppliers are using now to support the large aerospace OEMs,” said Jay Ball, product manager for Seco Tools Inc. (Troy, MI). “With just this one router, there is potential among five or six suppliers for about a $1.5 mil- lion a month in business.”


Tools of Choice


Macklin noted that Royal uses mostly CVD diamond-coat- ed carbide cutting tools for conventional dry carbon, fiber- glass and quartz composite machining. “Those materials are all abrasive enough that if you didn’t have a diamond coating on your tool, you’d be out of luck,” he said. One popular diamond-coated tool is a compression-


After a composite part comes out of the autoclave, it rarely matches its CAD file exactly. As a result, suppliers often spend hours machining a part to have it match the CAD file. RobbJack created this diamond-coated dovetail cutter to trim the part to match the CAD file and cut the bevel at the same time, eliminating secondary or tertiary operations. In one application, the dovetail cutter eliminated about 40 hours of cycle time.


style router with a neutral zone where two helix flutes— one upward and one downward—cross in a small zone, according to Macklin. The tool keeps both face sheets of the composite laminate in compression, prevent- ing delamination. While the routers work well for parts with thicknesses of 0.50 to 0.75" (12.7–19.1 mm), they cannot be applied to thinner laminates where the neutral zone is thicker than the parts. Royal’s O’Dey noted that one critical factor in choosing the right tools for aerospace machining is the composite’s base cloth. For example, Royal processes a large amount of unidirectional carbon epoxy compos-


92 — Aerospace & Defense Manufacturing 2016


Photo courtesy RobbJack


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256