search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
The Laserdyne 606D is a standard built, turnkey, com-


puter-controlled, multi-axis laser machining system uniquely featuring two completely independent machines in a single, unified cast structure. The system consists of four main components—two six-axis workstations; an integral Class 1 enclosure with dual automated doors; two S94P Laser Process Controls for integrated control of motion, laser, and process sensors; and two fiber lasers. The two, identical workstations of the Laserdyne 606D


system are fast and accurate. The maximum speed of the X, Y, and Z linear axes is 2000 ipm (50 m/min) with a maximum acceleration of 2 g. Accuracy of the linear axes is 0.0008" (20 µm).


With linear axes travels of 600 × 600 × 600 mm, the work envelope has capacity for processing high-volume compo- nents, such as combustors, as well as the related sheetmetal assembly parts associated with the new engine designs. The versatility of the design also allow for processing many components for legacy engines. Because of the space-efficient footprint and close proximity of the two workstations, both can be run by a single operator. “A goal of this and future Laserdyne systems is to provide laser systems with the highest customer value focusing on throughput, finished part quality, and floor space,” Prima Power Laserdyne President Terry VanderWert said. “The output per unit of manufacturing floor space is maximized through the system’s six-axis dual-workstation configuration and through the performance of the three linear and three rotary axes. The 606D is in direct response to the aerospace industry’s needs—they spoke, we lis- tened, and the Laserdyne 606D is the result. It’s the begin- ning of entire generation of new multiaxis laser systems,” he said.


Custom-Built Laser Systems Not the Answer Aerospace manufacturers require process consis- tency and repeatability in their manufacturing technology. Custom-built laser systems are restrictive, costly and may not provide a path to future laser technology. Compared with custom laser technology, the 606D is both backward compatible and “futureproof.” This means that complex aerospace laser programs that operated on earlier Laserdyne systems are compatible with the 606D. Likewise, new programs developed for the 606D will be designed to operate on future Laserdyne models.


Laserdyne BeamDirector Technology The 606D includes the latest generation of BeamDirec- tor heads for rounding out the 3D processing capability. The BeamDirector provides rotary and tilt (fourth and fifth) axes of laser beam motion. Rotary (or C axis) motion is ±450° about the Z axis while tilt (or D axis) travel is ±150° about the C axis. Among the features of the Laserdyne BeamDirector are


direct drive design, optical encoders for high accuracy (6 arc-second) and repeatability, high assist gas pressure and flow, and adjustable mirrors for easy and accurate beam alignment. The 606D is protected with multiple levels of crash protection covered by five-year unlimited hours warranty of damage to the BeamDirector.


‘SmartTechniques’ Lead to Smarter Laser Processes The 606D, as with all Laserdyne models, incorporates an expanding suite of proprietary capabilities, called “smart\ techniques,” which significantly raise the bar for quality, flex- ibility and productivity. “High-powered lasers and material processing have come a long way since they were introduced nearly 40 years ago,” said Mark Barry, vice president of Laserdyne. “This can be seen in the Laserdyne SmartTechniques that provide laser processing capabilities not previously available. Smart- Techniques are standard features of the S94P control that is included with the 606D.”


The exclusive Laserdyne SmartTechniques include: t SmartStop—reduces damage to a surface directly behind the one being drilled (“backwall”), which is especially important in combustor drilling.


t SmartShield—provides protection against excessive oxidation in the weld area while also protecting the beam delivery optics with regular, clean shop compressed air.


t SmartPierce—minimizes spatter and reduces time for piercing in cutting and drilling processes.


t SmartRamp—eliminates the depression at the end of laser welds.


The Laserdyne S94P control is key to many of the Smart-


Techniques through its ability to control fiber-laser param- eters in real-time and in relation to position.


Two S94P Laser Process Controls Enable Advanced Features The Laserdyne S94P control includes a full complement of standard hardware and software features for integrated con-


75 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256