search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
techview


3D Printing is Passing the Aerospace Test


A


erospace is one of the main industries embracing ad- ditive technologies, and the large growth in industrial metal 3D printing over the past few years can be


largely attributed to the A&D industry. Major players in the sector are accelerating the transition


from prototyping to large-scale production as they accept the technology for in-house use, and service providers to the industry are helping to mature the process and shorten devel- opment cycles. Additively “printed” metal parts are already in use in jet engines today. Three criterion exist for additive manufacturing (AM)


process technologies to be used effectively: They must be able to capitalize on the uniqueness the disruptive technol- ogy offers. They must provide functional parts that meet strict specifi cations. Finally, they must be repeatable. This is true regardless of industry, but A&D is currently the driving force of additive in the industrial market. Known for opening up design freedom, AM allows the


aerospace sector to take full advantage of these possibilities and remove barriers that traditional manufacturing processes had created.


Companies are learning how to design with a new inde- pendence from complexity; rather than choosing a geometry for a component, AM users can determine the specs required and then derive the geometry, leading to more effi ciently built and lighter parts. We work directly with Sintavia, a service provider of AM expertise specifi cally for the A&D sector, and see how they assist companies with optimizing designs to both lightweight components and improve performance. Topology optimization is key to making sure you exploit the advantages of AM. Taking the requirements of a cooling manifold bracket, for example, Sintavia was able to present fi ve design variations to be tested for tensile strength, fatigue and metallurgical properties. With the ability to print multiple prototypes in one process, these varying designs can also be tested faster. In the example of the manifold brackets, the original design and all variations were printed on one plate of an SLM 280HL with twin 400-W lasers in a single, 24-hour build. This ability to prototype faster signifi cantly reduces the design and


Jim Fendrick


VP Sales & Marketing SLM Solutions NA


development cycle. Qualifi cation, however, continues to be one of the largest


hurdles to expansion of AM. The rate of adoption is still slow, creating a bottleneck


where a huge number of parts that could be made addi- tively exist, but very little actually makes it to production as certifi cations struggle to keep up with individual component, machine and process qualifi cations. Yet this knowledge base is growing. Sintavia knows parts manufactured by AM are subjected to dimensional, material and mechanical verifi cation testing. With metallurgical lab services, Sintavia runs impact, hardness and both tensile strength and fatigue testing at elevated tempera- tures, specifi cally aimed at shortening time to market. They are a part of a new supply chain being created for these


new processes, and in the grander picture of additive manufac- turing overall, in the pursuit of completely new business models not previously possible without AM. Yet these prototypes are not just components built for test- ing. Once approved, they must still be manufactured additively, as there is simply no other way to produce their complex geometries. This is where the market fi nds itself, as the end-game of both OEM users and metal additive machine builders is full- scale production.


While technical challenges still remain, particularly as strategic users continue to test and develop new materials, metal additive manufacturing is making signifi cant strides in transparency to prove the stability, predictability and repeat- ability of the process.


Modules like layer monitoring, laser power monitoring, melt pool monitoring and oxygen level monitoring are standard or under development industry-wide. As these new 3D technologies mature, they’re accelerat- ing the transition from prototyping to large-scale production, resulting in faster, cheaper and more fl exible manufactur- ing processes. Major OEMs have already proven that these optimized geometries meet the required quality and tensile strength for acceptance and approval to use in engines, and as certifi cation becomes standardized, we will only continue to see the use of metal additive manufacturing grow.


37 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256