search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
techview


Why UAM Makes Sense for Aerospace & Defense


A


dditive manufacturing lets companies think “outside the box.” Engineers can now start to look at a part without restrictions on size, shape or material.


Instead of taking 15 different CNC milled parts and brazing them together, these companies have reimagined the part entirely—to be built as one part.


On top of that, adoption of additive manufacturing has led to a new generation of high-performance parts in the aero- space/defense sector, such as Lockheed Martin’s spherical fuel tanks for satellites. And some parts, such as the GE fuel nozzle currently in production, sport designs that could not be considered with conventional manufacturing. In the last fi ve years, a majority of the 3D-printed produc- tion parts coming out of the sector has been made from poly- mers. Polymer technologies have been around signifi cantly longer than metal additive manufacturing and, as a result, are more mature in the MRL (manufacturing readiness level) spectrum. Commercial and military vehicles are now fi lled with 3D-printed plastic ducts, cable stays, and hose routing systems. However, in the last 18 months Fabrisonic has seen an accelerated shift to 3D printing of metal production parts. Both airframers and fi rst-tier aerospace suppliers have been among the new adopters. Fabrisonic, which provides 3D metal printing services in a wide range of metals, is adding a new option to the mix: Its ultrasonic additive manufacturing (UAM) process, brought to market in 2015, harnesses sound waves to merge layers of metal foil in a process that requires no melting. This allows for the construction of parts previously thought impossible, such as aluminum parts with embedding cooling and embedded sensors for NASA and microchannel heat exchangers for Oak Ridge National Lab.


Building in the solid state enables Fabrisonic to join dis- similar metals and other thermally sensitive materials, such as electronics.


For example, in aluminum, the peak temperatures are be- low 250°F (121°C), which allows 3D printing without chang-


Mark Norfolk


President Fabrisonic LLC


ing the base material properties. The low temperature allows bonding combinations of metals such as Fe-Al, Al-Ti, Ta-Fe, and Cu-Al without forming brittle intermetallics. Due to the low temperature bond, UAM allows electron- ics and sensors to be embedded in solid blocks of metal without damage. Electronics can include microprocessors, plastic connectors, USB ports, thermocouples, fi ber optics and Bragg gratings.


Ultrasonic additive manufacturing lets manufacturers embed electronics and sensors in solid blocks of metal without damage.


One way this is playing out is in the placement of sensors


throughout a metal structure, to provide constant health and damage reports. A structure with an embedded fi ber optic strain sensor “knows” its own health and can actually record cumulative damage to a component over time. Another way the aerospace sector is leveraging this capability is through printing dissimilar metals in a single part. With UAM, dissimilar metals can be bonded without creating brittle intermetallics, and that makes it possible for Fab- risonic to print custom materials for a particular property. For instance, alternating layers of aluminum and titanium can be combined to produce an armor product that is lightweight but has suffi cient ballistic performance. Fabrisonic’s solid state welding approach also makes it possible to 3D-print complex internal shapes, such as heat exchangers. UAM enables component designs that have never been considered before. A part can be printed in one sitting that has (A) embedded channels for thermal manage- ment (B) metal matrix composites for strength (C) electronics and sensors for control and (D) multiple metals to optimize strength spatially. One part covering many functions will let manufacturers make lighter, more capable products.


49 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256