search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
techview Bryce Barnes -


Digitization will Magnify Mechanical Innovations


T


he machine tool industry is always innovating: Control systems, mechanical tolerancing, cutting, and adaptive feedback mechanisms just get better


and better. But machines are about to be turbocharged— by digitization. Commercial aerospace and defense manufacturers are changing their model from produce at any cost to opera- tional effi ciency. Digital machines are essential for that transition to happen. The move from machines that are isolated production centers to digitally connected machines that participate in a dynamic environment will occur in three phases: visualize, learn, and optimize. Along the way, leaps in connectivity, security, data mod- els, data services and automation will lead to more advanced control architectures.


Mechanical innovation will continue to advance as always. But the days when new mechanical innovations by themselves led to sustained growth in market share are ending. The digital revolution will magnify those mechanical innovations and enable machines to move from isolation to fully integrated production models that evolve toward learning systems. The coming transformation depends on robust con-


nectivity, security, fl exible compute and a software platform approach that makes the process repeatable and scalable. Security will be a top priority for defense and aerospace— where a lack of a security framework for manufacturing in general has held back digitization. First, we need to visualize the machine. While each manufacturer needs to know how to measure what is going on with its machines second by second, the vast majority of the world’s 65 million machines remains largely invisible to the usual software applications manufac- turers could be using to visualize machine performance. This phase will be about solving the connectivity, integration and data-acquisition challenges that MTConnect was created to address. This phase is about to accelerate with many more machine tool vendors and manufacturers adopting MTCon- nect as their standard protocol for data integration and


Senior Manager, Connected Machines and Robots Cisco’s IoT Vertical Solutions Group


acquisition. Watch for a wave of connectivity and innovation. Some of the largest A&D manufacturers and fabricators have already made MTConnect a standard for integration of their new CNC machines. Mazak, with the announcement of the Mazak SmartBox solution, is going digital with an innovative platform approach. Second, we must learn from the data we collect. The digital integration must lead to valuable-based outcomes in manufacturing. In the visualization phase, the outcome was simple and clear; green light time, machine state, utilization. It’s about knowing what the machines are up to and using that information to schedule better, cost better, or operate better. The learning phase builds on that and drives trending analysis over time. This phase is dominated by data col- lection, advanced visualizing and analytics. Here, we’ll see more predictive maintenance solutions like FANUC’s ZDT for cloud-connected robots. We can now track not only machine behavior over time but also the process, tooling, and even how effi cient the NC programs are.


A cloud strategy and an end-to-end IoT software platform that integrates with machines and provides turnkey data services that scale globally are essential to scale, manage, operate and realize value for this phase. Many machine build- ers and robot makers are developing a cloud-based platform approach to connecting their machines. Third, manufacturers will optimize continuously based on what is learned from crunching their data. We will see continuously improved machine operations,


tooling, process, speed of cut and even NC programs. The value of the secure, connected, cloud software strat- egy becomes clear in the last two phases.


Isolated machines cannot leverage the power of continu-


ous learning, distributed compute and advanced analytics. Automated, securely connected and digitized machines will help the most innovative aerospace and defense fi rms beat the competition and deliver high-quality, lower cost compo- nents and assemblies.


45 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256