search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
techview Drew Strauchen


The Truth about Balance: It’s the Assembly that Matters


T


here is a cloud of misinformation surrounding the topic of balance in the metalworking industry. Some- times created accidently through the communication grapevine, this misinformation gets passed down the vine and interferes with successful machining.


The truth about balance is this: When it comes to machin- ing, it is all about the entire toolholder assembly. This means not just the naked holder but all of the components around it that complete the assembly, such as cutting tool, collet, col- let nut, retention knob, set screw, and coolant tube. Properly balanced toolholder assemblies will net faster cycle times, improved tool life, higher quality fi nishes and signifi cantly less wear on the machine spindles themselves. To help clear the cloud around the topic of balance, I will


provide a clear defi nition of what unbalance is, address the current myths about balance and detail how balanced holder assemblies can eliminate a myriad of problems and help US manufacturers realize another level of effi ciency in their facili- ties to remain competitive in the global metalworking arena.


Defi nition of Unbalance Unbalance is that condition that exists when the Mass


Axis of a rotor does not coincide with the Rotational Axis. When this lack of equilibrium exists, centrifugal forces are generated that cause vibration. Picture wet towels loaded on one side of the washing machine or how you feel riding in your car if the wheels are not balanced.


Balance Myths No. 1: Out-of-the-box (pre-balanced) holders are good enough.


Retention knobs for CAT holders alone can reduce the al- lowable running speed from 25,000 to 4000 rpm (balanced to G2.5). That is a loss of 84%. Add on other variables like the cutting tool, collet nuts, set screws, collets and more and you start to see more clearly how this claim holds no water. All too often, these variables are downplayed because they rep- resent barriers to generating sales or testing opportunities. The loser is US manufacturing.


Vice President of Marketing & Business Development Haimer


No. 2: Balance concerns are for high-speed machining. Just because you can’t feel the vibration when you


are driving in your car at lower speeds does not mean the forces generated by your unbalanced wheels are not do- ing damage to your tires or axle. While balance certainly becomes more critical at higher speeds, it doesn’t mean there isn’t a negative impact at lower RPMs. Look no further than boring heads or indexable face mills to fi nd incredible value in balance at low speeds. It is not uncommon for a manufacturer to see double the insert life on their face mill inserts after balancing the entire assembly (face mill, arbor, pull stud, arbor bolt). No. 3: I’m running great, so it won’t help me. You might be running great, but you could be running even better if you were balanced. One shop owner recently received a balancer with his new high-speed machine. He decided, since he owned the balancer now, to balance the assemblies being used in his 11 older and slower machines. The result? He increased his speeds and tool life across the board by 21% while eliminating the downtime caused by replacing spindles every year.


Benefi ts of Balance When the centrifugal forces of unbalance can be equal- ized, the net benefi t is a signifi cant reduction in vibration that permits four key benefi ts: 1. Improved cycle times, achieved via the ability to in- crease spindle RPM without experiencing chatter.


2. Longer tool life. The reduction of chatter stabilizes the cutting tool, allowing premium substrates and coatings to realize their full potential.


3. Better surface fi nish. This is an obvious improvement resulting from less vibration.


4. Less machine downtime. Spindle burnouts are drasti- cally reduced when forces on spindle bearings are reduced anywhere from 50 to 400%. Investment into a balancer as part of a preventive maintenance program alone typically generates a return in fewer than 12 months.


39 — Aerospace & Defense Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256