27 Sample Preparation & Processing
target weights from 2 mg – 50 mg for each powder, in a variety of different laboratory environments (fume hood, glove box, local exhaust ventilation (LEV), purge box, on open bench). Preliminary results were presented at Pittcon 2018 [1]. The full fi ndings of this ETC study are published in Organic Process Research and Development [2].
Powder dispensing data collected during the ETC study demonstrated that the Mettler Toledo Quantos equipped with a single dosing head type (QH012-LNMP - see Figure 2) was generally suitable for all powders, at all target masses evaluated. Quantos could achieve accurate dispensing of a diverse set of powder types, in an acceptable time (Figure 3). Even at the lowest and most challenging target dose (2 mg), dispensing was broadly accurate and repeatable without any optimisation of dosing parameters. For screening workfl ows, the real advantage of automated powder dispensing is being able to dose below 10mg with high accuracy and precision, which allows many more experiments to be performed than previously feasible and therefore allows a much more comprehensive DoE.
Key Strengths of Quantos powder
dispensing technology The strengths of Quantos powder dispensing technology compared to other systems tested were: • High accuracy (low % error) • High precision (low % RSD mass) • Fast (low dispense times) • Suitability for all powder types • Minimal effect of environment (robustness of results - equipment used in multiple different containment devices and locations with minimal effect on results)
Figure 3: Dispense accuracy data collected on Quantos during ETC case study.
Quantos automated powder dispensing technology has proven success in accurately dispensing a wide range of different powder types, even those with extreme physical characteristics. Particle size has a strong influence on the flowability of a powder, and Quantos is able to successfully dispense free-flowing, high or low density powders, statically charged or hygroscopic powders, as well as powders with varying particle sizes, varying morphologies, and oxygen-sensitive materials, such as catalysts, that require handling and storage under nitrogen or in a glove box. The Quantos dosing technology is reportedly able to handle 90% of powders used in a pharmaceutical laboratory.
Automated dispensing of low target weights, in a variety of laboratory situations or containment systems, is possible without any significant impact on either the accuracy or speed of dispensing. The importance of reliable dispensing of a wide range of different powder types, in challenging laboratory environments, such as within a glove box or fume hood, with minimal impact on accuracy or speed, cannot be underestimated. Crucially, accurate dispensing can be achieved without the need for a trained expert user to invest time in dosing head selection, or complex system set-up and optimisation for each specific powder type, as the Quantos system is as intuitive as a balance - easy enough for anyone to use.
These critical factors - accuracy for wide range of powder types, suitability for low target weights, robustness in different environments, and ease of use - make Quantos technology feasible for use in general laboratory applications.
Automated Powder Dispensing into 96 Well Plates
One of the key requirements of many HTE workfl ows is the ability to dispense into 96 position plate formats. The most recent innovation in the Quantos powder dosing product portfolio now provides this capability. The fully automated CHRONECT Quantos platform combines the intrinsically accurate and effi cient Quantos powder dispensing technology with a state-of-the-art 6-axis robotic arm, to achieve many-to-many powder dispensing operations into a range of vial sizes (Figure 4). Up to 32 different powder substances, each with a dedicated dosing head to avoid cross-contamination, can be accommodated on the CHRONECT Quantos platform at any one time. Dispensing can be performed into three 12 - 96 position format plates at a time, with a maximum capacity of 288 vials or tubes (1 ml volume, 6 mm diameter).
Figure 4: Chronect Quantos for many-to-many powder dispensing into 12 - 96 position plate formats.
Looking ahead
Accurate and reliable powder dispensing will reduce both the time and the sample quantity required for a wide range of drug discovery and drug-effi cacy screens, which will help to alleviate the bottlenecks in pharmaceutical R&D screening and formulation workfl ows. Increasing pressure on the pharmaceutical industry is only likely to further increase the demand for powder dispensing in the lower mass range, due to screening earlier in development programs, where less material is available. Continuous developments in accurate and reliable powder dispensing automation, such as Quantos, can support these requirements.
Read more at:
www.mt.com/cs-quantos-powder
Additional Links:
1) ETC presentation: “A Collaborative Study on High Throughput Powder Dispensing Platforms”, Bahr M.,
http://www.etconsortium.org/pittcon2018
2) ETC publication: “Collaborative Evaluation of Commercially Available Automated Powder Dispensing Platforms for High-Throughput Experimentation in Pharmaceutical Applications”, Bahr M., Damon D., Yates S., Chin A., Christopher D., Cromer S., Perrotto N., Quiroz J., Rosso V., Org. Process Res. Dev. 2018, 22 (11), pp.1500-1508,
https://pubs.acs.org/doi/abs/10.1021/acs. oprd.8b00259?journalCode=oprdfk
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88