Heather Hobbs Research & events news
Polar Studies Underlie Indicators for Climate Change Models world’s leading research groups.
Delegates at the American Association for the Advancement of Science (AAAS) held recently in San Diego were presented with some of the latest findings of an international investigation into the distribution and abundance of Antarctica’s vast marine biodiversity — the Census of Antarctic Marine Life (CAML) - which began in 2005.
Antarctic marine life: Basket Star (pic credit BAS)
With more than 6,000 different sea floor dwelling species having so far been identified, it is the combination of long-term monitoring studies, newly gathered information on the marine life distribution and global ocean warming models, that have enabled the scientists to identify Antarctica’s marine ‘biodiversity hotspots’, explained presenter Marine Biologist Huw Griffiths, a researcher from British Antarctic Survey (BAS), one of the
In current studies to assess the impact of climate change on lake and ocean sediments, The British Antarctic Survey, is using a CE440 elemental analyser to help in analysis of sediment cores. A spokesman for BAS said: "We have used CHN/O/S elemental analysers from Exeter Analytical for some years and initially chose the system due to its unique horizontal furnace design which made it ideal for the analysis of our sample types.
One of our recent applications for the instrument is sediment cores, laid down over periods of thousands of years, collected from lake and ocean environments because
“The Polar Regions are amongst the fastest warming places on Earth and predictions suggest that in the future we’ll see warming sea surface temperatures, rising ocean acidification and decreasing winter sea ice - all of which have a direct effect on marine life. Marine animals spent millions of years adapting to the freezing, stable conditions of the Antarctic waters and they are highly sensitive to change. This means that from the scientist’s perspective they are excellent indicators of environmental change. The polar oceans are rich in biodiversity. If species are unable to move or adapt to new conditions they could ultimately die out. The loss of any unique species is therefore a loss of global diversity,” Griffiths said.
they contain a wealth of organic and inorganic remains from which it is possible to reconstruct past environmental and climate changes. Measurements of total organic carbon accumulation rates provide an index of past biological production which is often a function of temperature, and measurements of carbon to nitrogen ratios (C:N) combined with independent measurements of the carbon stable isotopes provide a diagnostic tool for identifying the sources of the organic matter. These standard measurements underlie many of the subsequent analyses conducted on the cores".
TO FIND OUT MORE CIRCLE NO. 4
French Scientist Receives Otto Schott Research Award
This year, the Otto Schott Research Award valued at 25,000 euros was presented to the French scientist Professor Tanguy Rouxel (Director of the Applied Mechanics Laboratory (LARMAUR), University of Rennes, France). He received the award for his research achievements in the area of mechanical properties of glasses and glassy materials. It was officially presented on May 18, 2010, in Corning, New York, during the 2010 Glass and Optical Materials Division Annual Meeting organised by The American Ceramic Society.
Highly respected internationally as a scientist his fundamental research on organic polymers and metallic glasses, chalcogenides and oxide glasses explores structure of glass in the atomic and nano value range.
“The work of Tanguy Rouxel is essential to gaining a better understanding of the elastic properties and deformation of glasses and how to reduce damages,” Professor Carlo Pantano, a member of the Board of Trustees, noted in his
laudation on the selection of this year’s award winner. “His ability to apply insights from what appear to be completely different fields to glass science and technology certainly ranks as one of his most remarkable skills,” Professor Pantano added. In addition, he called Rouxel an excellent networker who actively participates in numerous scientific projects.
In his ceremonial address, Dr. Hans-Joachim Konz, a member of the Board of Management at Schott and Chairman of the Board of Trustees of the Ernst Abbe Fund, underscored the immense importance of close cooperation between science and industry by saying: “The exchange of knowledge and experience is what makes innovations possible.” He then added that Tanguy Rouxel is hardly a stranger to Schott. After all, he and the company have been working together for years on exploring the strength of glass and the life expectancy of glass products.
TO FIND OUT MORE CIRCLE NO. 5
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220