search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Chromatography 7


During the acetonitrile shortage, it was difficult to work in the HPLC lab as acetonitrile was not readily accessible. The development of the ternary Cube was important in this situation, and demonstrated that in most cases an alternative method utilising methanol could be implemented instead of acetonitrile [18]. We can contribute to a green chemistry by reducing waste through computer modelling and reduce our environmental impact by reducing the volume of mobile phase waste.


As we can see, there is not much difference between both methods, but the method in Figure 6 using MeOH as eluent B is more environmentally safe and is less expensive as the method in Figure 9 using AN as eluent B.


References


1. J.L. Glajch and L.R. Snyder, eds, “Computer-Assisted Development for High Performance Liquid Chromatography”, Elsevier, Amsterdam, 1990 (J. Chromatogr., 485, 1989). 2. L.R. Snyder, J.J. Kirkland and J.L. Glajch, “Practical HPLC Method Development”, 1997, John Wiley & Sons, Inc 3. L.R.Snyder, J.W.Dolan, “High Performance Gradient Elution”, Wiley Interscience Hoboken, New Jersey, 2007 4. L.R.Snyder, J.W.Dolan, D.C.Lommen, J.Chromatogr., 485 (1989) 65-69. 5. J.W.Dolan, D.C.Lommen, L.R.Snyder, J.Chromatogr., 485 (1989) 91-112.


6. I. Molnár, K. Monks, From Csaba Horváth to Quality by Design: Visualizing Design Space in Selectivity Exploration of HPLC Separations, Chromatographia, 73 (2011) (Suppl.1) S5–S14. 7. S.V. Galushko, GIT Spezial Chromatographie, 2 (1996), 88–93. 8. S.V. Galushko, A.A. Kamenchuk and G.L. Pit, American Laboratory, 27 (1995) 421–432 9. A. Drouen et al., LC•GC, 9 (1991) 714. 10. S. Goga-Rémont, S. Heinisch, E. Lesellier, J. L. Rocca, A. Tschapla, Chromatographia, 51, (2000) 536


11. A. Bogomolov and M. McBrien , Mutual peak matching in a series of HPLC-DAD mixture analyses, Anal. Chim. Acta, 490 (2203)41–58 12. Cs. Horváth, W. Melander, I. Molnár, Solvophobic Interactions in Liquid


Chromatography with Nonpolar Stationary Phases J. Chromatogr., 125 (1976) 129- 156.


13. I. Molnár, Computerized design of separation strategies by reversed-phase liquid chromatography: development of DryLab software, J. Chromatogr. A, 965 (2002) 175-194.


14. I. Molnár, H.-J. Rieger, K.E. Monks, Aspects of the „Design Space” in high pressure liquid chromatography method development, J. Chromatogr. A, 1217 (2010) 3193–3200.


15. L. R. Snyder, J. W. Dolan, P.W. Carr, The hydrophobic-subtraction model of reversed-phase column selectivity. J.Chromatogr. A, 1060 (2004) 77–116.


16. Melvin R. Euerby, Matthew James, Patrik Petersson, Practical implications of the “Tanaka” stationary phase characterization methodology using ultra high performance liquid chromatographic conditions, J.Chromatogr. A, 1228 (2012) 165– 174.


17. M. R. Euerby, F. Scannapieco, H.-J. Rieger, I. Molnár, Retention Modeling in Ternary Solvent Gradient Elution Reversed Phase Chromatography using 30 mm Columns, J.Chromatogr. A, 1121 (2006) 219-227.


18. J.W. Dolan, L.R. Snyder, T. Blanc, L.Van Heukelem, Selectivity Differences for C18 Reversed-Phase Columns as a Function of Temperature and Gradient Steepness. I. Optimizing Selectivity and Resolution, J.Chromatogr. A, 897 (2000) 37-50.


19. M. Euerby, G. Schad, H.-J. Rieger, I. Molnár, 3-Dimensional Retention Modelling of Gradient Time, Ternary Solvent- Strength and Temperature of the Reversed-phase Gradient Liquid Chromatography of a Complex Mixture of 22 Basic and Neutral


Analytes using DryLab® 2010, Chromatography Today, Vol. 3, Dec. 2010, p.13.


20. Quality by Design: Multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation, K.Monks, I.Molnár, H.J.Rieger, B.Bogáti, E.Szabó, J.Chromatogr. A, 1232 (2012) 218-230.


21. A stepwise strategy employing automated screening and DryLab modeling for the development of robust methods for challenging high performance liquid chromatography separations: a case study, K. Jayaraman, A.J. Alexander, Y. Hu, F.P. Tomasella, Anal. Chim. Acta, 696 [1-2] (2011) 116-124.


22. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5 cm long narrow bore columns packed with sub-2_m particles and Design Space computer modeling Sz. Fekete, J. Fekete, I. Molnár, K. Ganzler, J. Chromatogr. A, 1216 7816-7823 (2009).


23. I. Molnár, K.E. Monks, H.-J. Rieger, B.-T. Erxleben, LCGC-Magazine, Experimental Combination of Method Development Strategies in a Working Environment of Different Instrumental Set-ups, 7, 5 (2011), 2–8.


24. A. Schmidt, I. Molnár, Using an innovative Quality-by-Design approach for development of a stability indicating UPLC method for ebastine in the API and pharmaceutical formulations, J. Pharm.Biomed.Anal., accepted for publication. Conclusion


Methods with short analysis times can aid production of drugs faster and more economically than before, typically using UHPLC instrumentation. The use of modelling software allows the development of methods concordant with QbD criteria, increasing flexibility in routine operations.


Retention and critical resolution problems can be more transparent than in the past. Method transfer is much easier using DryLab. Finally HPLC modelling is truly green as it saves time, energy and reduces waste.


ADVERTORIAL F-DGSi High Purity Hydrogen Generator


The F-DGSi ALLIANCE H2 generator saves space and eliminates the risks associated with storing high pressure cylinders, but also the hidden costs associated with piping connections, manometers, ordering, renting and delivering, servicing and maintaining cylinders.


F-DGSi offers 4 ranges of laboratory hydrogen gas generators: LC-H2 99,9995%, ND-H2 99,9995%, PAR-H2 99,9999%, WM-H2 99,99999%


Common Features and Benefits • multistage fail-safe system


• automatic H2 leak detection • class leading cell: reliable and robust • unique water quality management system • auto water fill included • continuous monitoring of vital parameters • PC monitoring and control included


• stackable with zero air generator to form an innovative modular FID gas station


For more information visit: www.f-dbs.com MORE INFO. 16 MORE INFO. 17


INTERNATIONAL LABMATE - APRIL 2013


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68