51 Easy Handling
A 96-/384-channel electronic pipette should be as easy to use as standard handheld manual pipettes. It should allow you to intuitively control the device by hand-eye coordination and not require any prior programming or special skills of the user. If all movements of the pipette are assisted by servo motors, the result is a completely effortless and ergonomic workflow.
Mobility and Space Requirements
The modern generation of 96- and 384-channel electronic handheld pipettes typically do not occupy more than 50 x 50cm of bench space, which is a much smaller footprint than most commercial automated liquid handling systems.
As a result, using 96-/384-channel electronic pipettes frees up valuable space on your workbench and enables them also to easily fit and be used in a laminar flow hood (Figure 4). You might not need to work sterile today, but be sure to have the option to do so in the future.
Figure 1. Filling of ten 96-well microplates with 150µl buffer per well is a typical but time consuming procedure using a multichannel pipette. An electronic 96-channel pipette using repeat dispense mode, allows users to perform this task in less than 50 seconds, which is 75% faster than the electronic multichannel pipette.
Accuracy and precision requirements
Make sure your pipette is not limited to a single volume range. It is a physical fact that the precision of air displacement pipettes is afflicted by large variation when pipetting below 10% of the maximal working volume. What might be good for handling media in cell cultures or when washing cells with buffer, is not optimal for setting up a PCR reaction and running other biochemical assays. Some 96/384-channel benchtop electronic pipetting systems allow you to easily exchange the pipetting heads on the same instrument (Figure 2): a choice of different working volume ranges allow you to pipette from 0.5 – 1250µl with optimal accuracy and precision.
Costs
96- and 384-channel handheld electronic pipettes are a truly cost effective way to increase sample throughput and reduce manual labour without the need to invest into complex laboratory automation.
Entry models are available starting from around €15,000, which is a fraction of the purchase cost of a fully automated system. Beneficially 96-/384-channel handheld electronic pipettes also lower running costs, as they do not require extensive training of personnel or involve any expensive maintenance contracts.
Electronic 96-/384-channel pipettes can also calibrated using a photometric procedure, a method that can be carried out in most labs.
Figure 2. Convenient exchange of a pipetting head.
Figure 3. Repeat Dispensing allows quick filling of multiple plates.
Figure 4. Pipetting in a laminar flow hood.
96 or 384 channels
The drive for higher sample throughput and the urge to cut cost per reaction looks set to continue. Today your lab might still be working in 96-well formats, but tomorrow you maybe want to switch to 384-well plates. If you see a need to work with 384-well plates down the road, it might be better to buy a pipette which can work with both 96- and 384-channel pipetting heads. If you worry about the higher cost for such a device, at least make sure your 96-channel pipette has a convenient indexing functionality for 384-well plates and provides a way to work precisely with volumes between 0.5 to 50µl.
Conclusion
In this article we have sought to introduce to you the many benefits that 96- and 384- channel handheld electronic pipettes have to offer. If you have a liquid handling application where you are looking to improve its reproducibility or enhance the productivity please visit the Integra website for further information on the VIAFLO 96 or VIAFLO 384 handheld electronic pipettes. Alternatively before choosing a 96- or 384-channel pipette you may wish to try it out under your own laboratory conditions.
Interested in publishing a Technical Article?
Contact Gwyneth on +44 (0)1727 855574
or email:
gwyneth@intlabmate.com Our articles are read by over 40,000 readers in print, online and via our Mobile App.
INTERNATIONAL LABMATE - APRIL 2013
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68