search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Hendricks—Miocene Conidae from the Gatun Formation of Panama follows.


Second, the asymmetry of the SSF (ASSF) was calculated as ASSF =SSFW1 = SSFW2


(5) Species with ASSF values <1 have asymmetrical SSFs,


while those with ASSF values of ~1 have symmetrical SSFs. Note that Harzhauser and Landau (2016) very recently pioneered an alternative approach to quantifying the shape of the SSF, wherein measurements were collected from images taken at an oblique angle relative to the SSF. Subsutural flexure data for individual specimens are presented in Supplementary data set 3. The terminology used here to characterize and describe


preserved shell coloration patterns revealed by UV light follows the recently developed approach of Hendricks (2015), which in turn was built upon earlier descriptive terminology developed by Röckel et al. (1995), Hendricks (2009), and Kohn (2014). Briefly, some cone snail shells show elements of coloration patterning that seemto occupy a single layer (e.g., rows of spiral blotches covering ashell’s last whorl). Others seemingly show two layers of patterning, with a basal (or, primary) layer that appears to be overprinted by a secondary layer (e.g., axial streaks overprinted by spiral bands). In some cases, these two layers of patterning show no evidence of interactions (i.e., a noninteracting pattern, where one pattern simply appears to cover another). In other cases, however, the two layers may interact with one another where they intersect (i.e., an interacting pattern); these interactions are described on a case-by-case basis. See Hendricks (2015) for additional discussion. Some of the Conidae species from YN020 have also been


reported from other tropical American localities and strata. The new morphological descriptions below pertain only to material from YN020 and studied type material. Future work will more broadly consider intraspecific differences across the Neogene of tropical America.


Repositories and institutional abbreviations.—All newly collected specimens from YN020 are reposited in the Florida Museum of Natural History Division of Invertebrate Paleontology collections at the University of Florida (UF). Previously published fossils, including type and figured specimens, are from the following museum collections: the Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania (ANSP); the California Academy of Sciences Department of Invertebrate Zoology and Geology, San Francisco (CASG); the Colección Nacional de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City (IGM); the Natural History Museum, London (NHMUK); the Naturhistorisches Museum Wien, Austria (NHMW); the Paleontological Research Institution, Ithaca, New York (PRI); the University of California Museum of Paleontology,Berkeley (UCMP); and the Smithsonian Institution National Museum of Natural History, Washington D.C. (USNM).


Systematic paleontology Family Conidae Fleming, 1822


Remarks.—While repeated tests have confirmed the monophyly of the Conidae (e.g., most recently by Uribe et al., 2017), the


809


internal classification of this hyperdiverse clade has been in a state of continuous upheaval in recent years, with significant disagreement about how to subdivide the clade into manageable Linnaean categories consistent with modern hypotheses of phylogeny (e.g., see varied views in Röckel et al., 1995; Tucker and Tenorio, 2009; Hendricks et al., 2014; Hendricks, 2015; Petuch et al., 2015; Puillandre et al., 2015; Harzhauser and Landau, 2016; Landau et al., 2016). While a suitable classifi- cation for extant cone snails is now available (Puillandre et al., 2014, 2015; Uribe et al., 2017), morphological features of their shells have yet to be coded and mapped upon the existing molecular trees. Because of this, detailed morphological diag- noses of individual clades supported by molecular sequence data remain largely lacking. For example, while molecular data suggest a great genetic divide between the two largest genera, Conasprella and Conus, morphological features of the shell present no obvious features that separate the two clades. Thus, detailed analyses of the phylogenetic distribution of cone snail shell characters in light of molecular sequence data are badly needed, most especially to diagnose the shell features of the different genera and subgenera of Conidae. The assignment below of fossil species of Conidae to individual clades, there- fore, is based largely on comparison with the shells—and especially the shell coloration patterns—of similar modern taxa of known phylogenetic position. Species with no obvious rela- tionship to modern taxa are assigned for now to Conus, reflecting the traditional classification of cone snails (see Röckel et al., 1995; Hendricks, 2009; Kohn, 2014).


Genus Conasprella Thiele, 1929


Type species.—Conasprella pagoda (Kiener, 1847) by sub- sequent designation (Tucker and Tenorio, 2009). Species is extant and occurs in the Indo-Pacific.


Remarks.—Based on molecular phylogenetic results, Puillandre et al. (2014, 2015) divided the extant clade Conasprella into seven subgenera, three of which (Kohniconus Tucker and Tenorio, 2009; Dalliconus Tucker and Tenorio, 2009; Ximeni- conus Emerson and Old, 1962) include tropical American members. All extant species of Conasprella are vermivorous (Puillandre et al., 2014), so this feeding ecology can also be assumed for fossil taxa assigned to this clade.


Conasprella imitator (Brown and Pilsbry, 1911) Figure 3.1–3.14


1911 Conus dalli Toula, p. 509, pl. 31, fig. 23a–d (not Conus dalli Stearns, 1873, an extant eastern Pacific species).


1911 Conus imitator Brown and Pilsbry, p. 342, pl. 23, fig. 4. 1917 ?Conus dalli; Maury, p. 212, pl. 7, fig. 15. 1921 Conus imitator; Pilsbry, p. 327. 1928 Conus imitator lius Woodring, p. 209, pl. 10, figs. 5, 6.


1970 Conus imitator imitator; Woodring, p. 354, pl. 55, figs. 1, 2.


2009 Gradiconus imitator (Brown and Pilsbry); Tucker and Tenorio, p. 97.


2010 Conus imitator; Landau and da Silva, p. 101, pl. 20, fig. 9a–c, pl. 21, fig. 1a, b.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207