search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 92(5), 2018, p. 751–767 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2018.8


Linguliform brachiopods across a Cambrian–Ordovician (Furongian, Early Ordovician) biomere boundary: the Sunwaptan–Skullrockian North American Stage boundary in the Wilberns and Tanyard formations of central Texas


Rebecca L. Freeman,1 James F. Miller,2 and Benjamin F. Dattilo3


1Department of Earth & Environmental Science, University of Kentucky, Lexington, KY 40506, ⟨rebecca.freeman@uky.edu⟩ 2Geography, Geology, & Planning, Missouri State University, Springfield, MO 65897, ⟨jimmiller@missouristate.edu⟩ 3Department of Biology, Indiana University Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, ⟨dattilob@ipfw.edu⟩


Abstract.—The Cambrian-Ordovician Diversity Plateau, between the Cambrian Explosion and the Ordovician Radia- tion, is punctuated by a series of well-documented Laurentian trilobite extinction events. These events define the bound- ing surfaces of trilobite ‘biomeres’ that correspond to North American stages, including those of the Sunwaptan and Skullrockian. Trilobites show a consistent pattern of recovery across these boundaries, and commonly each extinction and replacement of taxa is interpreted as a single event as changing environmental conditions spurred shoreward migra- tion of shelf or oceanic faunas that displaced established cratonic faunas. Linguliform brachiopods are also abundant in strata of this interval, and we investigate their stratigraphic distribution across the Sunwaptan–Skullrockian Stage bound- ary in Texas through high-resolution stratigraphic sampling of subtidal sediments. We document complete genus- and species-level turnover of the linguliform brachiopod fauna coincident with trilobite extinction events, suggesting that these brachiopods were affected by the same factors that affected trilobites. The Skullrockian replacement fauna was cosmopolitan, with ties to Gondwana and Kazakhstan and to the Laurentian shelf environment. The timing of appear- ances of taxa suggests that the faunal migration onto the Laurentian shelf came from elsewhere during a transgression. The disappearance of the Sunwaptan fauna and the arrival of the Skullrockian fauna are distinct events. We suggest that ‘biomere’ events may be complex, and the cause of the extinction is not necessarily the same event that facilitates the appearance of a replacement fauna.We describe one new species, Schizambon langei.


UUID: http://zoobank.org/f6a5c11f-cd3d-4c16-b184-d808d3a5285f Introduction


The late Cambrian–earliest Ordovician was a time of decreased to stagnant global diversity (e.g., Sepkoski, 1978, 1979, 1981, 1995, 1997; Bambach et al., 2004; Smith et al., 2012). This “Cambrian Diversity Plateau” followed the Cambrian Explosion and preceded the Great Ordovician Biodiversification Event (Servais et al., 2010). The cause of the global diversity plateau is unclear, but repeated trilobite extinctions that affected shelf communities punctuate this interval in Laurentia (e.g., Lochman and Duncan, 1944; Lochman-Balk and Wilson, 1958; Palmer, 1965, 1979, 1984; Longacre, 1970; Stitt, 1971a, b, 1975, 1977, 1983; Westrop and Ludvigsen, 1987; Westrop, 1988, 1989, 1990, 1996; Loch et al., 1993; Westrop and Cuggy, 1999; Taylor et al., 2004; Adrain et al., 2009; Saltzman et al., 2015). The term ‘biomere’ refers to the stratigraphic packages bounded by these extinctions (Palmer, 1965; review in Taylor, 2006). Directly above the strata recording the extinction event are thin ‘critical periods’ (Westrop and Ludvigsen, 1987) or ‘critical intervals’ (Taylor, 2006) dominated by one seemingly opportunistic trilobite species. These intervals


include taxa not related to genera found in strata below and are apparent migrants from deeper water environments (e.g., Palmer, 1979). The bases of these critical intervals are used to define North American stage boundaries (Ludvigsen and Westrop, 1983), although disagreement exists as to whether these intervals represent the last stage of one biomere (Stitt, 1971b, 1975, 1983; Taylor, 2006) or the first stage of the overlying biomere (Palmer, 1979). Further controversy has centered on whether the extinctions were caused by changing environmental conditions, such as water temperature or oxygen level (e.g., Lochman and Duncan, 1944; Stitt, 1971b, 1975, 1977; Palmer, 1984; Loch et al., 1993; Perfetta et al., 1999; Gill et al., 2011; Saltzman et al., 2015; Gerhardt and Gill, 2016) or were due to a changing distribution and merging of biofacies associated with sea level rise (e.g., Ludvigsen and Westrop, 1983; Westrop and Ludvigsen, 1987; Westrop, 1996; Westrop and Cuggy, 1999). Implicit in many of these hypotheses for the extinction events is the idea that the same changing environmental conditions that caused the extinction also facilitated the migration of trilobite species, giving rise to replacement faunas.


751

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207