search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 92(5), 2018, p. 804–837 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.153


Diversity and preserved shell coloration patterns of Miocene Conidae (Neogastropoda) from an exposure of the Gatun Formation, Colón Province, Panama


Jonathan R. Hendricks1,2,3


1Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York, USA ⟨jrh42@cornell.edu⟩ 2Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA 3Department of Geological Sciences, Ohio University, Athens, Ohio, USA


Abstract.—Extant members of the neogastropod family Conidae (cone snails) are renowned for their often dazzling shell coloration patterns and venomous feeding habits. Many cone snail species have also been described from the fossil record, but to date have been little used to understand the evolutionary history of extant clades. The cone snail fauna of the Miocene Gatun Formation of Colón Province, Panama is especially important for understanding the temporal and biogeographic history of tropical American Conidae. Intensive, focused collecting from an exposure of the lower Gatun Formation (deposited ca. 11–10 Ma) resulted in the discovery of nearly 900 specimens of Conidae. Remarkably, many of these well-preserved specimens exhibit revealed coloration patterns when exposed to ultraviolet light. The fluorescing coloration patterns were used in conjunction with other features of shell morphology to differentiate species and, in most cases, evaluate their potential relationships to members of the extant tropical American fauna. Nine species are fully described from this locality, one of which is recognized as new: Conus (Stephanoconus) woodringi n. sp. At least one, and perhaps more, additional Conidae species are also present at the study locality. The diversity of this Conidae fauna is considered moderate relative to other recently analyzed tropical American fossil assemblages. The phylogenetic diversity of the assemblage, however, is noteworthy: six of the ten species can be confidently assigned to six different clades of extant Conidae, providing potentially useful calibration points for future phylogenetic studies.


http://zoobank.org/8fe00c31-8f3f-4514-85af-29068e468cd3


Introduction


The colorful and intricately patterned shells of cone snails (Fig. 1), which comprise the neogastropod family Conidae, have attracted the interest of naturalists and collectors for centuries. Besides having shells that are beautiful natural objects, cone snails are highly specialized venomous predators of worms, mollusks, or fish (e.g., Kohn, 1956; Duda et al., 2001; Olivera et al., 2014), and are ecologically important in tropical and subtropical marine habitats (e.g., Kohn 1959, 2001). The complex venoms (conopeptides) that they use to paralyze their prey are noteworthy for sometimes being dangerous to people (see Kohn, 2016), though they also hold significant pharmacological potential for treating varied human ailments (e.g., Vetter and Lewis, 2012;Gorson andHolford, 2016). Finally,with nearly 900 extant species (see below), cone snails are remarkably diverse and their relationships to each other are becoming better understood. Based on the branching topology of a newmolecular phylogenetic hypothesis for cone snails (Puillandre et al., 2014), Puillandre et al. (2015) divided extantmembers of the family into four genera: (1) the basal genus Profundiconus Kuroda, 1956, represented by 28 species (Marshall and Bouchet, 2016); (2) Californiconus


Tucker and Tenorio, 2009, represented by one living eastern Pacific species (Bouchet, 2011); (3) Conasprella Thiele, 1929, represented by 113 species (Marshall and Bouchet, 2017); and (4) the hyperdiverse genus Conus Linnaeus, 1758, represented by 755 species (Bouchet and Gofas, 2015). Puillandre et al. (2015) further divided Conasprella and Conus into subgenera corre- sponding with individual subclades; many of these subgenera correspond with genus-level rankings proposed earlier by Tucker and Tenorio (2009). Uribe et al. (2017) very recently published a phylogenetic analysis of mitochondrial genomic data and recognized two additional genus-level clades within the Conidae: Lilliconus Raybaudi Massilia, 1994 and Pseudolilliconus Tucker and Tenorio, 2009. Cone snails have a fossil record that extends back to the


early Eocene (Kohn, 1990; Röckel et al., 1995; Hendricks and Portell, 2008), and their shells are common constituents of many Miocene, Pliocene, and Pleistocene marine fossil deposits, especially in tropical America. Several of these cone snail faunas have received recent attention by paleontologists, including those of the Miocene (Landau et al., 2016) and early Pliocene (Landau and da Silva, 2010) of Venezuela, the late Miocene and early Pliocene of the Dominican Republic


804


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207