search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Freeman et al.—Upper Cambrian linguliform Brachiopods from Texas


valve from Utah appears to be less inflated and have more spines and fewer nodes than this Texas material.


Results


Sunwaptan ties to the Great Basin.—Quadrisonia lavada- mensis Popov, Holmer, and Miller, 2002 occurs in the Sunwaptan part of the section. This species was reported previously in Utah (Popov et al., 2002), and the genus has a wide distribution in strata equivalent to the Sunwaptan globally (Freeman and Miller, 2011b). Zhanatella utahensis Popov et al., 2002 also ranges through the Sunwaptan part of the section (Rasettia magna Subzone of the Saukia trilobite Zone, Fig. 2), which is a distribution similar to the other reported occurrence of the species in Utah (Popov et al., 2002; Freeman and Miller, 2011b). Although Z. utahensis is known only from these two occurrences in North America, the genus Zhanatella is globally distributed and is reported from Kazakhstan (Koneva, 1986; Popov and Holmer, 1994; Holmer et al., 2001; Koneva and Ushatinskaya, 2008), the Montagne Noire region of France (González-Gómez, 2005; Álvaro et al., 2007), and Antarctica (Henderson et al., 1992). Specimens of Wahwahlingula Popov, Holmer, and Miller, 2002 occur in middle Sunwaptan strata in Texas (Taenicephalus Zone to Rasettia magna Subzone). This cosmopolitan genus occurs in Russia (Popov et al., 2002), Iran (Ghobadi Pour et al., 2011), as well as possibly East Gondwana (Australia; Brock and Holmer, 2004) and the Western Gondwanan Montaigne Noire region of France (González-Gómez, 2005). Stittia ornata Freeman and Miller 2011b was previously


reported only from Utah, in equivalent Sunwaptan strata (Freeman and Miller 2011a, 2011b). This genus is endemic to North America.


Sunwaptan–Skullrockian turnover.—The turnover of brachio- pod taxa is complete across the Sunwaptan–Skullrockian boundary at both the generic and specific levels. However, a 23.5m interval encompassing most of the Prosaukia serotina and Eurekia apoposis trilobite zones and the Cambrooistodus minutus and Hirsutodontus hirsutus conodont subzones (Fig. 2) yielded no identifiable brachiopods. Sampling thoroughly cov- ered the interval, but the ~125 samples processed yielded either no brachiopods at all, or linguliform shell hash so thoroughly comminuted that identification was impossible.


Cosmopolitan Skullrockian fauna.—The lowest identifiable Skullrockian brachiopod is a single specimen of Eurytreta Rowell, 1966 in the highest part of the Eurekia apopsis trilobite Zone (Fig. 2). The specimen is not identifiable to species. Eurytreta is associated particularly with Skullrockian and higher strata in North America (Popov et al., 2002; Holmer et al., 2005; Miller et al., 2011; Miller et al., 2014), but has a cosmopolitan distribution (Ushatinskaya, 2010). Stitt (1971b, 1975, 1977) identified the Eurekia apopsis trilobite zone as the critical interval (stage four of Stitt’s four-stage biomere devel- opment). Taylor (2006) considered the overlying Apoplanias trilobite Zone to be the true critical interval, and samples from this interval did not yield recognizable brachiopods in Texas. The species Eurytreta sublata Popov in Koneva and Popov,


763


1988 tentatively is identified in lower Skullrockian strata (Fig. 2). This species has been reported previously from Utah (Popov et al., 2002), Kazakhstan (Holmer and Popov, 2001), and Iran (Popov et al., 2009a). Distinctive fragments of a hollow- spined siphonotretid, possibly Siphonobolus Havlíček, 1982, occur in the same sample, in the Symphysurina trilobite Zone (Fig. 2). A similar siphonotretid occurs in equivalent strata in Iran, based on conodont stratigraphy (Popov et al., 2009a) and is associated with Eurytreta sublata. Siphonotretids with hollow spines are also reported from slightly older strata (possible Proconodontus tenuiserratus conodont Zone) from a different location in Iran (Popov et al., 2009b), which is the oldest report of such a morphology. Two species of Schizambon Walcott, 1884 appear in lower


Skullrockian strata (Symphysurina trilobite Zone) at a similar stratigraphic level as the occurrence of the oldest known species reported from Laurentia, S. typicalis Walcott 1884 (Walcott, 1884, 1912; Popov et al., 2002). The genus Schizambon ranges upper middle Cambrian to Ordovician (Holmer and Popov, 2000) and has a global distribution (Popov et al., 2013).


Discussion


Brachiopods and sequence boundaries.—The Sunwaptan– Skullrockian boundary in the study area has been interpreted to coincide with a period of lowered sea level, the Lange Ranch Lowstand or Lange Ranch Eustatic Event (Miller, 1978, 1984, 1992; Miller et al., 2003). The absence of linguliform brachio- pods in any form other than comminuted shell hash could support the interpretation of a shallow, high-energy depositional environment, although the comminuted hash can alternatively be interpreted as a bioclastic lag associated with transgression. Detailed sampling across the same interval in Utah also failed to yield identifiable linguliform specimens (Popov et al., 2002). If this interval is interpreted as the beginning of a transgression, then the coincidence of the trilobite extinction/apparent brachiopod extinction with the underlying sequence boundary is consistent with the prediction that apparent extinction events may be related to stratigraphic processes (e.g., Holland and Patzkowsky, 2015). The appearance of brachiopods with global affinities as sea level rose (Osleger and Read, 1993; Miller et al., 2003) is consistent with cratonward-shifting biofacies during the subsequent transgression. The presence of unidentifiable comminuted linguliform brachiopod hash in some samples above the ‘extinction,’ and before the ‘recovery’ indicates that our perception of the timing of these events is affected by taphonomic factors related to depositional conditions.


Potential Kazakhstan/Gondwana to Laurentia Skullrockian post-extinction migration.—The distribution of Eurytreta sublata in Iran (Popov et al., 2009a) and Kazakhstan (Homer et al., 2001) suggests migration between Laurentia, Kazakhstan, and Gondwana after the Sunwaptan–Skullrockian extinction. The lowest appearance of Eurytreta cf. E. sublata in lower Skullrockian strata in both the Great Basin and Texas suggests migration of that genus from outside of Laurentia. One possi- bility is Kazakhstan, where another Eurytreta species occurs in Sunwaptan-equivalent strata in the Malyi Karatau Range (Holmer et al., 2001). Another older occurrence of species of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207