search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Kloster and Gnaedinger—Agathoxylon wood anatomy from La Matilde Formation, Argentina Materials and methods


The specimens described come from the La Matilde Formation, SantaCruz Province, Argentina, (Fig. 1.1) and were collected from the Bajo El Puma locality of the central and south-western sector and another four localities from the Gran Bajo de San Julián sector: Laguna La Guadalosa (Estancia El Mineral), Cerro Conito, Barda Blanca and the northern part of Estancia Meseta Chica (Estancia Meseta Chica), and the south-east border of Laguna del Carbón (Estancia La Silvita) (Figs. 1.2, 3). The in situ petrified woods and rolled trees reach diameters of up to 2.4m (Fig. 2). Fragments of silicified wood showing good cellular pre-


servation were analyzed. Standard petrographic thin-sections were prepared for the wood fragments oriented along three planes: radial longitudinal (RLS), tangential longitudinal (TLS), and transverse (TS). In addition, techniques based on acetate peels and dissociated material (Jones and Rowe, 1999) also were employed. Thin-sections were studied in detail under a Leica microscope (DM500) and microphotographs were taken by digital camera (Leica ICC50) with Leica Application Suite EZ 3.2.3 software and a scanning electron microscope (SEM Jeol 5800LV) at the Universidad Nacional del Nordeste (Cor- rientes, Argentina). The wood has been described in accordance with the list


549


1964 Dadoxylon agathioides Kräusel and Jain, p. 59, pl. 1, figs. 1–3, pl. 3, figs. 14, 15, text-figs. 1, 4.


1974 Araucarioxylon agathioides (Kräusel and Jain); Bose and Maheshwari [seen in Yadav and Bhattacharyya, 1996, p. 59].


Holotype.—24288/255 B.S.I.P. from Mandro, Rajmahal Hills, Bihar, India (Jurassic).


of microscopic features for softwood identification (García Esteban et al., 2002, 2003; Richter et al., 2004). Greguss’s (1955) glossary of terms and the standard measurements established by Chattaway (1932) are followed. At least 20 individual measure- ments of the various anatomical elements were recorded, giving values for means, maxima and minima, and occasionally the maximum number established (e.g,. 42µm[25–66µm] or 3–14 [35] cells). Systems of nomenclature and nomenclatural reviews are


those found in Bamford and Philippe (2001) and Philippe and Bamford (2008).


Repository and institutional abbreviations.—Specimens and microscopic slides are deposited in the paleontological collec- tion of the Universidad Nacional de Nordeste (UNNE) “Dr. Rafael Herbst” Paleobotany Section (CTES-PB) and (CTES-PMP), Corrientes, Argentina.


Systematic paleobotany Order Coniferales Engler, 1897


Family Araucariaceae Henkel and Hochstetter, 1865 Genus Agathoxylon Hartig, 1848


Type species.—Agathoxylon cordaianum Hartig, 1848, p. 188.


Remarks.—According to the criteria of Bamford and Philippe (2001), Philippe and Bamford (2008), and Rößler et al. (2014), the genus Agathoxylon Hartig has nomenclatural priority over the genera Araucarioxylon and Dadoxylon; hence, the La Matilde Formation specimens are assigned to Agathoxylon Hartig.


Agathoxylon agathioides (Kräusel and Jain) new combination Figures 3, 4.1, 4.2.


Description.—Several fragments of silicified wood found in situ in the Barda Blanca, Cerro Conito, and Laguna La Guadalosa localities from the Gran Bajo de San Julián sector and Bajo El Puma locality (Figs. 1, 2) of the central and south-western sector were analyzed. The logs found in situ measure up to 1.50m in diameter, and one of the logs reaches up to 4mlong by 1.10min diameter. Specimen CTES-PB 10647 has a wavy external appearance due to the effects of pressure during fossilization, because in making the conventional cuts it is observed that in the same section it shows a mixture of longitudinal radial and tan- gential and cross-sections. All specimens correspond to pyc- noxylic wood, decorticated and with good preservation of the secondary xylem. The description is based on the specimen from the Barda Blanca locality (CTES-PB 10659), although examination of the other specimens supports it (Tables 1, 2). This specimen, in TS, does not show growth rings nor are they observed with the microscope, even though at first glance they are apparently well marked, which is due to the presence of “shearing zones” sensu Erasmus (1976) (Fig. 3.1). In TS, the tracheids have rectangular-quadrangular to polygonal outlines. The radial diameter of the tracheids is 31 μm(15–37 μm) and the tangential is 33 μm (22–45 μm). The average number of rows of tracheids separating the rays is 4, with a range of 1–11. The rays are presented in a non-continuous way through the section (Fig. 3.1). In RLS, the wood type (tracheid radial pitting) is araucarian (100% of the contiguous pits are araucarioid). Pits are bordered, uniseriate, and flattened (35% [32–38%]) biseri- ate, hexagonal, and alternate (32% [29–37%]), and occasionally triseriate or bi-triseriate, hexagonal, alternate, or opposite (0.4% [0–1%]). In addition, they are uniseriate, with biseriate portions (32% [30–36%]), flattened, and hexagonal, alternate (23% [21–25%]) and opposite in a single pair (8% [6–12%]) or in several pairs (1% [0–2%]). Rare groups of 6–10 pits are recog- nized; they start and end with a single pit and have portions without pitting in the walls of the tracheids. The size of the biseriate pits is 15 ×15 μm and the uniseriate pits are 15× 11 μm. The aperture is cross-like (internal and external elliptical aperture), measuring 15 ×4 μmor11 ×4 μm, or cir-


cular measuring 7.5 μm(Figs. 3.2, 3.3, 3.4, 3.5, 4.1, 4.2). Cross- fields show an araucarioid type arrangement, with 2–6 arau- carioid pits (circular aperture) or cupressoid pits (elliptical aperture) whose frequency range is 4–6, arranged in groups or in horizontal or vertical rows. In some marginal cross-fields, 7–8 pits can be observed (Fig. 3.6, 3.7). In TLS, the radial system is homogeneous, with homocellular, uniseriate rays (84%), and some partially biseriate rays with 1–3 cells (16%). The height ranges from 1–22, 37 cells, with an average of seven cells. The radial end cells are elliptical and the central ones are rectangular- ovoid, and they measure 26 ×22 μm, 30 ×26 μm, or 34× 30 μm in width and height. In tangential and radial section, the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232