738
Journal of Paleontology 92(4):734–742
of AUP 11192, as preserved, are 10.5mm and 5.4mm, respectively.
Phylogenetic analyses
The parsimony analysis found 7176 MPTs of 265 steps, and the 50% majority rule consensus tree shows good resolution for most clades (Fig. 3.1). The consistency (CI) and retention indices (RI) for the 50% majority rule consensus tree are 0.38628 and 0.66403, respectively. No clade had a Bremer support score>1 (complete statistics and associated files for both phylogenetic analyses can be found in the Supplemental Data). Generally, our results agree with those of other recent studies (Rauhut et al., 2012; Martínez et al., 2013; Apesteguía et al., 2014; Cau et al., 2014; Hsiou et al., 2015). One of the major differences is that our analysis recovered Pleurosauridae as the sister group of Sphenodontidae. The terrestrial Pami- zinsaurus Reynoso, 1997 is the earliest diverging taxon within the Sphenodontidae, which includes two major clades. The first clade includes Ankylosphenodon Reynoso, 2000, Derasmo- saurus Barbera and Macuglia, 1988, Oenosaurus Rauhut et al., 2012, and Zapatadon Reynoso and Clark, 1998 in a polytomy, whereas the second clade is well resolved, recovering the Early Jurassic Cynosphenodon Reynoso, 1996 and the modern Sphe- nodon Gray, 1831 as successive sister taxa to the clade com- prising Theretairus Simpson, 1926 and Sphenovipera Reynoso, 2005. The strict consensus tree of the second analysis of Cau et al. (2014) also found Derasmosaurus, Oenosaurus, and Zapatadon in a similar polytomy, and forming the sister group of the clade comprising Sphenodon, Cynosphenodon, Spheno- vipera, Kawasphenodon Apesteguía, 2005, and Theretairus. The close relationship of Sphenovipera and Theretairus has been constantly recovered in previous analyses (e.g., Martínez et al., 2013; Apesteguía et al., 2014; Hsiou et al., 2015). Within clevosaurs, Brachyrhinodon Huene, 1910 was
Figure 2. Fraserosphenodon latidens n. comb.: (1, 2) AUP 11191, right premaxilla, shown in labial (1) and lingual (2) views; (3–5) AUP 11192, right dentary, shown in labial (3), lingual (4), and occlusal (5) views. Scale bars=6mm (1, 2); 3.5mm (3–5).
The specimen includes three generations of teeth, but canini- form teeth are lacking. The front ofAUP11192 has two rounded successional teeth similar to those of the premaxilla. These teeth are followed by a series of six or seven small semicircular remnants of hatchling teeth with minor signs of wear on the occlusal surfaces. On the distal end of this element, we found three or four additional teeth that in both labial and lingual view show the same triangular shape seen inVMNH 525. In occlusal view, the teeth of AUP 11192 show heavy signs of wear and the round, bulbous shape seen in VMNH 525. This round, bulbous shape is more pronounced in the distalmost additional tooth of AUP 11192. Additionally, AUP 11192 includes three mental foramina of relatively large size (Fig. 2.3), which suggests that this specimen comes from a juvenile. The length and height
recovered as the earliest diverging taxon. All Clevosaurus spe- cies are grouped in a polytomy, which obscures the relationships between the species. The results for clevosaurs are quite similar to those recovered by the strict consensus tree of Hsiou et al. (2015). The only difference is that in their analysis, Poly- sphenodon Jaekel, 1911 appears as the earliest diverging taxon within Clevosauridae, but all other taxa were recovered in a polytomy. A similar polytomy for clevosaurs was also shown in the strict consensus tree of Rauhut et al. (2012). Our results agree with the work of Martínez et al. (2013) and Hsiou et al. (2015) in recovering Fraserosphenodon latidens as an early diverging opisthodontian. Indeed, we recovered F. latidens as the earliest diverging taxon within Opisthodontia. This clearly confirms that F. latidens is not referable to the genus Clevo- saurus, and supports the erection of a new opisthodontian genus, as previously suggested (Jones, 2006a, 2009; Martínez et al., 2013; Hsiou et al., 2015; Klein et al., 2015). Within Opisthodontia, the relationships of eilenodontines are quite well resolved; our results only differ from the works of Martínez et al. (2013) and Cau et al. (2014) in finding Ankylosphenodon outside of Opisthodontia. Another major difference compared to the previous ana-
lyses of Martínez et al. (2013) and Hsiou et al. (2015) is that the Triassic taxon Pelecymala was no longer recovered as closely
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232