search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Jacisin and Hopkins—Fossil newts from the Oligocene of Oregon


that epipleural processes are present throughout fossil and extant salamandrids (and even other salamanders) to some extent, with various types and levels of functionality (Nussbaumand Brodie, 1982; Brodie et al., 1984; Marjanović and Witzmann, 2015). It is therefore difficult to project the function of epipleural processes in fossil Taricha with complete confidence outside of their similarity to those of extant Tylototriton verrucosus. The skin of all newts is toxic and sometimes fatal to


potential predators; it is especially potent in the genus Taricha (Wakely et al., 1966; Brodie, 1968a, 1968b; Brodie et al., 1974; Hanifin, et al., 2004). Given the phylogenetic bracketing of T. oligocenica and T. lindoei with other toxic newt species (including both North American genera), the fossil species were also likely to have been toxic, although it is impossible to discern how potent the toxins actually were in these organisms. Naylor (1978a) was the first to propose a connection between the frontosquamosal arch and newt toxins on the basis that it is decidedly advantageous if an organism with toxic (not to mention distasteful) skin secretions also has defensive mechan- isms that allow it to survive and decrease injury from predators experiencing the poison. In a now-famous encounter, one bullfrog (Lithobates catesbeiana) voluntarily ate an individual of T. granulosa (Brodie, 1968a). The defensive advantages of a robust, hardy body and toxic skin secretions became clear when the frog died within ten minutes and the newt emerged unscathed shortly after (Brodie, 1968a). While the toxicity of the fossil newts in this study is unknown, the skeleton of T. oligocenica in particular is more armored than that of T. granulosa (Van Frank, 1955), and is likely able to resist easy consumption from predators, as seen in extant Taricha (Brodie, 1968a, 1977; Naylor, 1979).


Conclusions


Our four phylogenetic analyses provided mixed results when compared to the molecular phylogenies of Zhang et al. (2008) and Pyron (2014), yet consistently nested Taricha oligocenica, Taricha lindoei, Taricha miocenica, and Notophthalmus robustus within a clade of North American newts. Future studies should attempt to find additional osteological characters for all fossil and extant species of North American newts for better resolution of morphological analyses, particularly for Notophthalmus, which appears to be problematic in morpholo- gical analyses. Unfortunately, the morphological characters in this analy-


sis did not resolve the positions of the fossil taxa relative to extant species of the genus, so their exact classification within the North American clade is uncertain. The use of muscular and behavioral characters does not help resolve fossil species, while a lack of species-level osteological characters, the presence of homoplasy in some potential characters, and the possibility of cryptic species complicate the ability of our analyses to discriminate between taxa. A detailed morphological study of T. oligocenica and


T. lindoei supports their classification as separate species more similar to Taricha than to any other known genus of newt. As in the phylogenetic analysis, this conclusion suggests that the genus Taricha has deep roots into at least the early Oligocene, where ancestors to living species may have diverged


731


32–33 Ma. Functionally, T. lindoei is similar to, though possibly smaller than, all extant taxa, and existed in a seasonal temperate environment similar to the environments in which Pacific newts are found today. Taricha oligocenica, on the other hand, represents a large, robust newt that was considerably more armored than extant Taricha, and lived in a milder climate nearer to the Oligocene coast. Because we did not directly examine any specimens of


Taricha miocenica or of fossil Notophthalmus outside of published literature (Tihen, 1974; Estes, 1981; Holman, 2006), it is of particular importance to examine and compare these fossils in detail with additional fossils of Taricha and Notophthalmus, along with skeletons of extant members of these genera, to examine their evolutionary relationships with modern North American salamandrids. The fact that T. miocenica and all fossils of Notophthalmus are only pre- served as isolated vertebrae (Tihen, 1974; Estes, 1981) enhances the difficulty of such determinations, and our analyses and observations indicate further development of vertebral char- acters is clearly required. Despite the complications, only by performing such studies can we hope to draw concrete conclu- sions on the phylogenetic positions North American fossil newts relative to each other and to extant Taricha and Notophthalmus.


Acknowledgments


We thank E. Davis (UOMNCH), G. Retallack (UOMNCH), J. Samuels (East Tennessee State University), P. Holroyd (UCMP),K. Padian (UCMP), andD.Wake (UCMVZ) for access to the specimens under their care. We are grateful to E. Davis (UOMNCH),G.Retallack (UOMNCH), J. Samuels (ETSU), and the past and presentmembers of theHopkins-Davis Lab and other students from the University of Oregon for productive discourse and support. Special thanks to E. White (UOMNCH), for con- tributing line drawings for Figures 1 and 5, and N. Famoso (JODA), for photographs in Figures 1, 2.1, 7.2, and 7.3.We give credit to the Museum of Comparative Zoology and Harvard University for permission to use copyrighted material to help make the line drawings in Figure 5.We also thank the editor and reviewers of this paper for their contributions to the quality of this work, particularly D. Marjanović for his insight on non-North American newts. Finally, we acknowledge funding from a Geological Society of America graduate student research grant, the University of Oregon Thomas Condon Fellowship, and the UCMP Doris O. and Samuel P. Welles Research Fund for making this research possible.


Accessibility of supplemental data


Data available from the Dryad Digital Repository: http://dx.doi. org/doi:10.5061/dryad.8m9t1


References Albright, L.B. III, Woodburne, M.O., Fremd, T.J., Swisher, C.C. III, MacFadden, B.J., and Scott, G.R., 2008, Revised Chronostratigraphy and Biostratigraphy of the John Day Formation (Turtle Cove and Kimberly members), Oregon, with Implications for Updated Calibration of the Arikareean North American Land Mammal Age: The Journal of Geology, v. 116, p. 211–237.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232