search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
656


Journal of Paleontology 92(4):648–660


Material.—UMNH.IP 5294, valve (0.79mm L, 0.42mm H, 0.18mm W).


Remarks.—The generic diagnosis follows Holland (1934) and Kukhtinov (2004). The single specimen of Whipplella? sp. 1 is badly preserved, which allows only a tentative placement in the genus Whipplella, based on the general shape of the valves in lateral and dorsal view. Whipplella? sp. 1 and Cypridoidea indet. by Schudack (2006) could be the same species, but the specimens of the latter are badly preserved, and the attribution is at best doubtful.


Whipplella? sp. 2 Figure 5.23–5.25


Occurrence.—Hettangian, Lower Jurassic, Whitmore Point Member, Moenave Formation, Arizona and Utah, USA.


Material.—UMNH.IP 5295, valve (0.90mm L, 0.49mm H, 0.16mm W).


Remarks.—The generic diagnosis follows Holland (1934) and Kukhtinov (2004). The single specimen of Whipplella? sp. 2 is badly preserved, which allows only a tentative placement in the genus Whipplella, based on the general shape of the valves in lateral and dorsal view.


Results and discussion


In the present taxonomic review, four ostracode species were identified from sediments of the Whitmore Point Member, deposited in and along the margins of a lacustrine environment, referred throughout the region as Lake Dixie, and associated/ interbedded mudflat environments during the earliest Jurassic. The composition and stratigraphic position of this ostracode fauna makes it an interesting case to understand the demise of darwinulocopines as the main nonmarine ostracodes, both in terms of abundance and diversity, during early to middle Mesozoic times.


Evolutionary history of late Paleozoic–early Mesozoic darwi- nulocopines.—Darwinulocopines are known in the fossil record


since the late Paleozoic (Carbonel et al., 1988). The group flourished during the Carboniferous–Triassic, an interval from which the majority of darwinulocopine families, genera, and species has been so far described. During that time, the group presented greatermorphologic variety (Wang, 1980;Kashevarova and Neustrueva, 1982; Sohn, 1987; Molostovskaya, 1990) than shown by darwinulocopine flocks in earlier strata. Nonmarine faunas of the Carboniferous–Triassic also contained forms likely more closely related to the Carbonitidae Sohn, 1985 and Geisinidae Sohn in Benson et al., 1961 of the suborder Metaco- pina Sylvester-Bradley in Benson et al., 1961 (Martens et al., 1998; Tibert et al., 2013). Cytherocopines were also present in these environments, especially during the Permian, represented by orders such as the Permianoidea Sharapova in Schneider, 1948 and the Cytheroidea Baird, 1850 (Kashevarova, 1990). Late Permian darwinulocopines were highly diverse in terms of morphology and taxa, and three superfamilies are


present in the fossil record (Darwinuloidea, Suchonelloidea Mishina, 1972, and Darwinuloidoidea), each with its distinctive evolutionary history. They inhabited large, shallow lakes in which the variety of habitats was favorable to high diversity (Neustrueva, 1990). This apparently coincided with the presence of sexuality in at least some groups in this lineage, and Permian darwinulocopines commonly exhibited sexual dimorphism (Sohn, 1988; Molostovskaya, 2000). On the other hand, all modern darwinulocopines, except possibly one species (Smith et al., 2006), are exclusively parthenogenetic, and have apparently been so since late in the Mesozoic (Schön et al., 2009). The Permian-Triassic (P-Tr) extinction event greatly


reduced darwinulocopine diversity in nonmarine environments in ways similar to those observed in marine ones (Jin et al., 2000; Liu et al., 2010; Forel, 2013). It is still poorly known how these nonmarine faunas rebounded from such event during the Triassic, as they would soon be hit by another major extinction event, the ETE, which was probably caused by a disruption in the global carbon cycle due to emplacement of the Central Atlantic Magmatic Province (CAMP) (Beerling and Berner, 2002). The Upper Triassic also possibly witnessed the origin of the cytherocopine family Limnocytheridae Klie, 1938, which would become widespread in the Upper Jurassic −lower Cretaceous (Zhong, 1964; Zheng, 1976; Fang and Xu, 1978). The diversity of these faunas was maintained during the Lower Jurassic (Wakefield, 1994; Ballent and Díaz, 2012), only to be halved by the remainder of the period, before the explosive radiation of nonmarine cypridocopines, notably of the family Cyprideidae Bosquet, 1852, and the limnocytherids in the Middle–Late Jurassic (Whatley, 1988; Sames and Horne, 2012). Proposed scenarios for the widespread dispersal of non-


marine darwinulocopines in the late Paleozoic range from transportation by early tetrapods, either in wet mud adhering to their feet or in the intestines of aquatic plant-feeding animals, to humid winds in warm, subtropical environments, considering that monsoons and hurricanes can carry wet particles for long distances (Lethiers and Damotte, 1993; Horne, 2003). Evidence suggests that darwinulocopines were also tolerant of stressed environments such as shallow, warm, hypersaline lagoons and saline lakes (Gramann, 1971; McKenzie, 1981; Molostovskaya, 2000). Certainmorphophysiological traits that enabled their rapid spread through these and other habitats were present in darwinulocopine nonmarine faunas since at least the Permian (retaining eggs and juveniles in brood pouches) (Molostovskaya, 1990; Neustrueva, 1990) or the Early Jurassic (asexual reproduction by parthenogenesis). The record of parthenogenesis in darwinulocopines is a particularly remarkable one; despite being common in nonmarine ostracodes from several ages, it has not been the sole mechanism of reproduction in any other group for so long in the fossil record (Butlin et al., 1998; Martens et al., 1998; Schön et al., 2009). Exactly how long, however, is still a topic of discussion, although it is currently estimated to have persisted since 208Ma ago (Martens et al., 2003).


Lake Dixie as the ‘Last Hurrah of the Reigning Darwinuloco- pines’.—The strata of the Whitmore Point Member were deposited in Lake Dixie, soon after the ETE and the establish- ment of CAMP. The ostracode fossil record of this unit is marked by several mass mortality events, as evidenced by strata


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232