search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
700


Journal of Paleontology 92(4):681–712


(range 0.33–0.86). Calyx medium to low cone shape, height to width ratio 1.7–3.3 (mean=2.5), medium to large size for genus, widest at level of arm openings, straight sided from base to level of arm openings. Outline of calyx at level of arm openings circular. All calyx plates nodose; nodes commonly large, horizontally elongate nodes, terminations sharp, rounded, or fluted (Fig. 8.3, 8.8); proximal elongate nodes may project downward (Fig. 8.9); plate sculpturing dominates appearance of calyx. Basal circlet truncate proximally, high, 6–16% of calyx


height (mean=13%), visible in side view; very shallow basal concavity formed by nodes. Basal plates three (Fig. 8.6, 8.7), equal in size, with an elongate transverse extension of basal plates forming proximal rim of calyx, nodes project horizontally or slightly proximally, but not beyond radials; basal rim always deeply indented at basal-basal sutures. Radial circlet 12–25% of calyx height (mean=18%); radial plates five, hexagonal or heptagonal, 2.2–4.1 times wider than high (mean=3.0). Regular interrays not in contact with tegmen, all plates nodose, typically a single interradial plate, may have one additional plate above; first interradial heptagonal to nonagonal, higher than wide, either smaller or larger than radials. Primanal heptagonal, approximately as wide as high,


central node prominent, but less transversely elongate than node on radials; plating P-3-1, not in contact with tegmen. Fixed brachials all nodose. First primibrachial very small,


wider than high, may not extend full width of ray so that the radial plate is in partial sutural contact with second primibra- chial, much reduced transverse elongate node; second primi- brachial axillary, large, pentagonal, central node. Only one secundibrachial, axillary. Additional fixed brachials slightly wider than high, last fixed brachial commonly tertibrachial three. Free arm facets elongate, inclined slightly upward. Tegmen low inverted cone from arm openings to base of


anal tube; plates large, spinose; anal tube long eccentric toward anterior; one thecal opening on either side of arm facet. Anal tube tall, narrow, small plates without nodes or spines. Free arms 12–15; characters of the free arms are not known. Proximal columnals circular, wide crenularium, very


narrow aureola or absent, wide trilobate or pentalobate lumen; one nudinodal separated by one internodal. Character of remainder of column not known.


Materials.—The holotype of B. spinosus is FMNH UC 6435, and the holotype of A. marineri is USNM 39895. Additional specimens from the Lake Cumberland area are USNM 639928–USNM 639932. OSU 54502–OSU54505, and CMC IP76372–CMC IP76375.


Measurements.—See Supplemental Table 5.


Remarks.—Eretmocrinus spinosus is a Miller and Gurley species that has not been considered for more than one century. Re-examination of Fort Payne Formation specimens from the Lake Cumberland region using the generic definitions of Ausich and Kammer (2010) has revised our understanding of this taxon. In many previous studies the crinoid identified as Magnuscrinus praegravis (né Eretmocrinus praegravis)isnow recognized as Eretmocrinus spinosus (né Batocrinus spinosus).


Magnuscrinus praegravis and E. spinosus are convergent in overall thecal shape with a low calyx, high tegmen, and domi- nant calyx and tegmen plate sculpturing. A key diagnostic character that separates Magnuscrinus and Eretmocrinus is the morphology of the interradial regions. In Magnuscrinus, the plating of the interradial regions is continuous with plating on the tegmen, whereas in Eretmocrinus it is not. The taxon in question lacks a connection between interradial and tegmen plating; thus it should be assigned to Eretmocrinus. Further, the horizontal, elongate, very large, downward-projecting nodes on the specimens now assigned to E. spinosus are consistent with the holotype of E. spinosus and not with that of Magnuscrinus praegravis. The only previous study that included both of these species was Wood (1909). She regarded them as distinct species, and we agree. For comparison to other Fort Payne species of Eretmocrinus,


see remarks of E. magnificus.


Eretmocrinus magnificus Lyon and Cassseday, 1859 × Eretmocrinus spinosus Miller and Gurley, 1895a


1895a Batocrinus laciniosus Miller and Gurley, p. 14, pl. 1, figs. 15, 16.


1994 Eretmocrinus magnificus Lyon and Cassseday × Eretmocrinus praegravis Miller; Ausich and Meyer, p. 362, fig. 1b, c.


2013 Eretmocrinus laciniosus Miller and Gurley; Webster and Webster, p. 1419.


Occurrence.—All specimens currently recognized as Eretmocrinus magnificus ×E. spinosus are from the Fort Payne Formation. The original specimens were described from localities along Lake Cumberland, but with the addition of Batocrinus laciniosus to Eretmocrinus magnificus ×E. spinosus, this hybrid is also recognized from what is interpreted to be the Fort Payne Formation from an unspecified site in Tennessee.


Materials.—The specimens assigned to this hybrid by Ausich and Meyer (1994) are USNM463329 and USNM463330. The holotype of Batocrinus laciniosus, also regarded as this hybrid, is FMNH UC 6433.


Remarks.—As noted above, Lake Cumberland region crinoids previously identified inAusich andMeyer (1994) asEretmocrinus praegravis Miller, 1892a are now regarded as Eretmocrinus spinosus; thus, changing the name of the hybrid specimens recognized by Ausich and Meyer (1994) to Eretmocrinus magnificus Lyon and Cassseday, 1859×E. spinosus Miller and Gurley, 1895a. Only three specimens of this unusual morphology are known and the morphology is variable; therefore, we regard these as hybrid specimens rather than a distinct species with a hybrid origin. As argued by Ausich and Meyer (1994), the three hybrid specimens occurred at localities (Gross Creek Buildup and Cave Springs Buildup) that supported both Eretmocrinus magnificus and Eretmocrinus spinosus. The hybrid specimens have an intermediate calyx shape and calyx plate sculpturing between these two parent species. Using Stepwise Discriminant Functional Analysis, Ausich and Meyer (1994) demonstrated that


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232