search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Insights from microbial surveillance in broilers


Well-designed microbial surveillance programmes can identify risk factors, guide treatment strategies, and illuminate differences in pathogenic microbial populations in high- and low-performing broiler flocks.


BY AMY LANGE, MICROBIOLOGIST, UNITED ANIMAL HEALTH M


0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00


icrobial surveillance research in broiler production may take many forms. Whether microbial surveillance programmes focus on the environment, the litter, or the bacteria of


the intestinal tract, they come with an ambitious promise: to identify the most relevant pathogens present in a flock, to characterise them in ways that matter, and to guide decision- making about feeding strategies and management practices.


Microbial profiles With all microbial surveillance programmes, sampling strate- gy matters. Bacteria in the GIT vary widely in environmental needs, hardiness, and survivability under various conditions, a fresh gut sample contains a wider variety of fragile anaero- bic bacteria than a litter sample exposed to air for hours, and even within the gut, microbial profiles vary by section due to pH, oxygenation level, and nutrient availability.


Microbial surveillance based on DNA DNA-based microbial surveillance is a culture-independent


tool which provides a snapshot of the microbes present in a sample at the time of sample capture and preservation. A properly handled sample preserves the DNA of all microbes present in a sample, regardless of their fragility, viability, or growth requirements in the lab and can be tested for gene sequences from a wide variety of microbes. DNA-based microbial surveillance can identify microbial issues by identifying specific virulence genes carried by pathogenic strains and serotypes of different species. For example, an avian pathogenic E. coli strain carrying virulence genes involved in acute colibacillosis or a Clostridium perfringens strain capable of producing the toxin involved in necrotic enteritis present very different health hazards than other commensal strains likely to be present in the gut. Knowing virulence types can provide insight into the disease processes affecting performance.


Surveillance designed for poultry Expanding on their success in other livestock markets, United Animal Health has developed a microbial surveillance programme for poultry, beginning with a large study of broiler producers in important poultry-producing regions of the US. Screening samples for a broad range of microbial targets using high-throughput technologies, they have used molecular methods to investigate differences in virulence gene carriage in the broiler gastrointestinal tract. Samplings were conducted onsite at grow-out farms, covering houses with differences in health or performance. Swab samples


Figure 1 - Average quantities of virulence genes from health-related microorganisms in caecal samples from healthy, undersized, and sick birds.


E. coli virulence genes a a a a a b b b b b b b b b b b b b a b a


0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00


hlyF iutA iroN ompT iss eaeA east1 Clostridium virulence genes


a


a


a b b b cpa b netB


bbb cpb


a b cpb2 a b b


C. septicum csa


116 ▶ GUT HEALTH | DECEMBER 2020


Log10 Gene Copies


Log10 Gene Copies


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124