search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Oxidised β-Carotene copolymer improves gut health


Recently discovered copolymer derived from β-Carotene oxidation offers an immunological approach for improving multiple facets of gut health and helps to support optimal productivity.


BY WILLIAM RILEY, JINAN UNIVERSITY, GUANGZHOU CHINA I


mmune modulation represents a compelling approach for promoting or maintaining gastrointestinal tract (GIT) health. The abundance of innate immune factors present in the gut makes products that specifically target innate


immunity of particular value. Research conducted with a re- cently discovered and immunologically active copolymer compound derived from oxidised β-carotene provides com- pelling support for the concept of innate immune modula- tion as a means of improving GIT health. Research studies and commercial use show that the activities of the copolymer improve GIT health, which ultimately results in increased ani- mal productivity and improvements in overall health. The existence and immunological activity of the copolymer was discovered by Avivagen, a Canadian biotech company. The compound arises naturally from the full, spontaneous ox- idation of β-carotene and occurs in highly variable levels in various plant-based feeds and foods. Avivagen has developed a commercial product for use in feed, OxC-beta Livestock (“OxC-beta”), that is a concentrated and consistent source of the copolymer. The product is able to prime the innate im- mune system towards a more “ready state of alert” to invad- ing pathogens, as well as limiting the propagation of exces- sive inflammation.


Primed immune system The innate immune system is primed by increasing the num- ber of pattern recognition receptors, which, sensing microbial or other pathogenic invaders, triggers a response to combat them. This contrasts with immune stimulating products, which continuously activate existing receptors. The benefit of immune priming versus stimulation is that priming has no on-going metabolic cost in the absence of a pathological challenge to the animal. Evidence of the positive benefits of innate immune priming on GIT health has been obtained in trials that show a reduction in the levels of gram-positive and


108 ▶ GUT HEALTH | DECEMBER 2020


gram-negative pathogens in broilers and piglets receiving di- etary supplementation with the copolymers. Clostridium per- fringens challenged broilers supplemented with the copoly- mer experienced up to a 2.5-log reduction in the CFU count relative to control birds. Further benefits were observed in the form of reduced intestinal lesion severity. The reduction in lesion severity highlights an immune priming action of the copolymer that does not cause an over-zealous immune re- sponse that could damage healthy tissues.


Reduced E. coli levels In a piglet trial, dietary supplementation with the copolymer led to reduced E. coli levels in the ileum (3.2 log), caecum (3.2 log) and faeces (4.2 log) relative to the negative control group. E. coli levels in the copolymer-treated group also tend- ed to be lower than that of the antibiotic group (Tiamulin + Chlortetracycline). Dietary supplementation with copolymer in post-wean piglets reared under commercial production conditions resulted in reductions of up to 53% in the inci- dence of diarrhoea. It is important to note that the copolymer does not possess antimicrobial activity; rather the effect on bacterial levels stems indirectly from priming of the immune system, allowing the host to more readily detect and respond to the presence of bacteria. Chronic, low-level immune activity can negatively impact gut morphology and cause reduced efficiency due to loss of ab- sorptive capacity. At a mechanistic level, the β-carotene-de- rived copolymer has shown the ability to normalise or bal- ance immune activity in a number of research models of gut, lung and skin. The benefits of balancing immune activity can be observed as an increase in villus length/crypt depth (V/C) ratio in both broilers and piglets. An increase in this ratio is known to improve nutrient absorption and feed efficiency through an expansion in the absorptive area of the intestine. In broilers, the dietary copolymer was shown to increase the V/C ratio in a dose-dependent manner relative to a negative control, while in piglets, a similar dose-dependent response was evident compared to an antibiotic control group.


Healthy gut microbiome Immune modulation offers further benefits for GIT health, in the form of promoting a healthy gut microbiome. The com- plex community of microbes that make up the microbiome are known to play an important role in GIT health, as well as the overall health of the animal. The immune system of the


PHOTO: MELANIE DEFAZIO


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124