search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
82


Journal of Paleontology 91(1):73–85


Table 1. Module diameter of Amsassia argentina n. sp. For seven specimens from La Silla Formation, two distinct areas within a transverse thin section were sampled, characterized by polygonal and subpolygonal to rounded mod- ules. Polygonal module diameter = (long axis + short axis)/2. Abbreviations: Max., maximum diameter (mm); Min., minimum diameter (mm); Avg., aver- age diameter (mm); SD, standard deviation; n, number of modules.


Module shape Polygonal


Subpolygonal to rounded


Max. Min. 1.12


0.84


0.53 0.44


Avg. SD n 0.87


0.54


0.14 0.11


38 41


2014; M. Lee et al., 2016). The Argentinean material is assigned to a new species, A. argentina. Species of Amsassia reported from northern Kazakhstan


and western Siberia have module diameters that are less variable in size than A. argentina n. sp.: A. princeps (0.73–1.0mm; Sokolov and Mironova, 1959), A. chaetetoides (1.0–1.4mm; Sokolov and Mironova, 1959), and the type species A. raduguini (1.1–1.4mm; Sokolov and Mironova, 1959). Amsassia shaanxiensis from northern China (Sun et al.,


2014) has modules generally polygonal to subpolygonal and closely packed, rarely rounded, and partially to entirely separated, with module diameter ranging from 0.46 to 1.66mm, which is larger than in A. argentina (0.41–1.11mm). Amsassia koreanensis M. Lee et al., 2016 was described


from Korea and China. This form has an exceptionally small module diameter (0.06–0.28 mm), which is different from the size range observed in A. argentina. Other species reported from China and Mongolia,


include A. minima (0.2–0.4mm; Yang et al., 1978), A. tudiaoensis (0.3–0.6mm; Yang et al., 1978), A.(?) minima (0.3–0.5mm; Lin and Chow, 1980), and A. sheshanensis (Deng, 1984; Ye et al., 1995), all with smaller module diameters and narrower size ranges than A. argentina n. sp. Amsassia soluta and A. abnormis (Yu, 1962) have a range of variation (0.5–1.1mm; M. Lee et al., 2016) that almost overlaps the range observed in A. argentina n. sp. However, module diameters of 0.3–0.4mm are found in our material, measured in loosely packed areas. The dark median line separating adjacent modules,


visible in some sections, could be related with early diagenesis, and apparently not related with the presence of a true medial plate or fused epithecae of adjacent modules. Unfortu- nately, poor preservation prevents a complete analysis of this aspect.


Amsassia is a problematic modular organism with a coral-


like skeleton that recentlywas reevaluated by Sun et al. (2014) and M. Lee et al. (2016). After a comprehensive analysis, Amsassia was compared with different types of corals, tetradiids, chaetetid sponges, and algae, those authors suggested that Amsassia may represent an extinct group of calcareous algae. Lichenaria is a common Lower and Middle Ordovician


tabulate, considered the basal genus in the early radiation of tabulates (Scrutton, 1984, 1997; Pandolfi, 1989). In species of Lichenaria, the corallites exclusively show a cerioid structure and are separated by fibrous, continuously fused common walls. The septal structures are absent and it has abundant tabulae (Elias et al., 2008, and references therein). Lichenaria grew exclusively through lateral corallite increase, which is consid- ered to be the key feature for identifying the genus (Elias et al.,


2008). All these characteristics clearly separate our material from the lichenariid stock.


Paleogeographic distribution of Amsassia and its role in the early development of metazoan reefs


In the last few years, there have been several new contributions on upper Cambrian to Lower Ordovician reefs and reef-related organisms (Adachi et al., 2009, 2012a, b, 2015; Hong et al., 2012, 2015; Wang et al., 2012; Choh et al., 2013; Kruse and Reitner, 2014; Lee et al., 2014, and references therein). Those studies have begun to fill in the well-known gap in metazoan reef records after the demise of archaeocyaths in the late early Cambrian (Pratt et al., 2001; Webby, 2002; Rowland and Sha- piro, 2002). After collapse of the early Cambrian calcimicrobial-


archaeocyathan reef consortium, metazoans played little part in reef construction for ca. 30Myr (Rowland and Shapiro, 2002; Adachi et al., 2015). Many reef-mound findings in the post-extinction interval were completely constituted by microbes (Webby, 2002; Rowland and Shapiro, 2002; Lee et al., 2015).


Nevertheless, exceptional metazoan reefs have been docu-


mented from the interval commencing around the beginning of the Furongian Epoch, when spiculate sponges began to actively participate in reef construction. Some of these reefs are mainly microbial, but demosponges helped as secondary reef builders (Cañas and Carrera, 1993; Riding and Zhuravlev, 1995; Shapiro and Rigby, 2004; Kruse and Zhuravlev, 2008; Wang et al., 2012; Choh et al., 2013; Kruse and Reitner, 2014) (mainly summarized in Rowland and Shapiro, 2002; Hong et al., 2012; Adachi et al., 2015). Orchoclad demosponges diversified in the late Cambrian as


the main metazoan constituents of reef settings. Orchoclads, in particular the anthaspidellids, had tough, ladder-like, desma- based skeletal construction that allowed them to occupy high- energy reef environments (Carrera and Botting, 2008). Other mainly Early Ordovician reef-related metazoans are


the receptaculitid calathids, which commonly are associated with the orchoclad demosponges and recognized as accessory reef constructors (Carrera, 1991; Church, 1991; Cañas and Carrera, 1993; Liu et al., 2005; Adachi et al., 2012a; Hong et al., 2012; Wang et al., 2012; Choh et al., 2013; Li et al., 2015). Calathids are not as diverse as the orchocladine demosponges, but show a widespread distribution (Rowland and Shapiro, 2002; Webby, 2002; Wang et al., 2012). The stromatoporoids or stromatoporoid-like organisms,


commonly domical or encrusting forms, became frame builders or accessory frame builders in varying degrees by the early Tremadocian (Toomey and Nitecki, 1979; Keller and Flügel, 1996; Webby, 2002; Cañas and Carrera, 2003; Zhen and Picket, 2008). Pulchrilamina Toomey and Ham, 1967 from the Lower Ordovician of Utah and New Mexico (Toomey and Nitecki, 1979) was one of the oldest recorded forms. New records of Lower Ordovician reef-related stromatoporoids have been reported from China and Korea (J.-H. Lee et al., 2016; Li et al., 2016). Stromatoporoids and stromatoporoid-like organisms were classically recognized as frame builders because of their


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208